留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋流器结构对点火性能影响的大涡模拟

刘云峰 黄勇 王惜伟 王洪妍 王东辉

刘云峰, 黄勇, 王惜伟, 等. 旋流器结构对点火性能影响的大涡模拟[J]. 航空动力学报, 2022, 37(10):2286-2294 doi: 10.13224/j.cnki.jasp.20220233
引用本文: 刘云峰, 黄勇, 王惜伟, 等. 旋流器结构对点火性能影响的大涡模拟[J]. 航空动力学报, 2022, 37(10):2286-2294 doi: 10.13224/j.cnki.jasp.20220233
LIU Yunfeng, HUANG Yong, WANG Xiwei, et al. Large eddy simulation on influence of swirler structure on ignition performance[J]. Journal of Aerospace Power, 2022, 37(10):2286-2294 doi: 10.13224/j.cnki.jasp.20220233
Citation: LIU Yunfeng, HUANG Yong, WANG Xiwei, et al. Large eddy simulation on influence of swirler structure on ignition performance[J]. Journal of Aerospace Power, 2022, 37(10):2286-2294 doi: 10.13224/j.cnki.jasp.20220233

旋流器结构对点火性能影响的大涡模拟

doi: 10.13224/j.cnki.jasp.20220233
基金项目: 国家重点基础研究发展计划(1234AB5678); 国家自然科学基金(12345678); 国家科技重大专项(2017-Ⅲ-0007-0032)
详细信息
    作者简介:

    刘云峰(1996-),男,助理工程师,硕士,主要从事航空发动机点火熄火研究

    通讯作者:

    黄勇(1964-),男,教授、博士生导师,博士,主要从事燃烧室点火熄火机理及预测、喷雾机理与设计。E-mail: yhuang@buaa.edu.cn

  • 中图分类号: V231.2+4

Large eddy simulation on influence of swirler structure on ignition performance

  • 摘要:

    为研究旋流器结构对航空发动机燃烧室点火性能的影响,使用大涡模拟方法结合wall-adapting local eddy-viscosity(WALE)亚格子模型、动态增厚火焰模型,并设置单个脉冲火花,模拟了轴径向和双轴向旋流器燃烧室的点火过程。结果表明:相同结构和工况下,点火位置的流场因湍流脉动随时间变化,因而点火时刻会影响点火模拟结果。对于实验中能成功点火的结构和工况,为避免模拟时使用单脉冲火花影响点火结果,应选择在速度方向指向回流区,速度幅值小于平均值的时刻点火。对比轴径向和双轴向旋流器燃烧室的动态流场演变过程,发现双轴向旋流器燃烧室的火花正对旋转射流,点火位置瞬时速度指向回流区的概率更低,火焰更易向下游移动而非进入回流区。因此其点火性能劣于轴径向旋流器燃烧室。

     

  • 图 1  轴径向旋流器燃烧室网格

    Figure 1.  Mesh of axial-radial swirler combustor

    图 2  双轴向旋流器燃烧室网格

    Figure 2.  Mesh of dual-axial swirler combustor

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  轴径向旋流器燃烧室平均流场

    Figure 4.  Mean flow field of the axial-radial swirler combustor

    图 5  点火位置径向速度变化

    Figure 5.  Variation of the radial velocity at ignition position

    图 6  算例1点火时刻速度大小

    Figure 6.  Velocity magnitude at the ignition moment of case 1

    图 7  算例2点火时刻速度大小

    Figure 7.  Velocity magnitude at the ignition moment of case 2

    图 8  轴径向旋流器燃烧室50 ms时的点火过程

    Figure 8.  Ignition process in axial-radial swirler combustor at 50 ms

    图 9  轴径向旋流器燃烧室在97.5 ms时的点火过程

    Figure 9.  Ignition process in axial-radial swirler combustor at 97.5 ms

    图 10  双轴向旋流器燃烧室平均流场

    Figure 10.  Mean flow field of the dual-radial swirler combustor

    图 11  x=24 mm时径向位置的速度分布

    Figure 11.  Radial distribution of axial velocity at x=24 mm

    图 12  两种结构中间截面旋涡中心的分布

    Figure 12.  Eddy distribution of two structures on the middle section

    图 13  双轴向旋流器燃烧室点火位置径向速度变化

    Figure 13.  Variation of the radial velocity at ignition position of dual-axial swirler combustor

    图 14  算例3点火前流场

    Figure 14.  Flow field of case 3 before ignition

    图 15  双轴向旋流器燃烧室燃油流量2.4 g/s时点火过程

    Figure 15.  Ignition process in dual-radial swirler combustor when fuel mass flow rate is 2.4 g/s

    图 16  双轴向旋流器燃烧室燃油流量4 g/s时点火过程

    Figure 16.  Ignition process in dual-radial swirler combustor when fuel mass flow rate is 4 g/s

    表  1  算例信息

    Table  1.   Information of calculation examples

    算例旋流器结构燃油流量/(g/s)点火时刻/ms结果
    1轴径向2.450.0失败
    2轴径向2.497.5成功
    3双轴向2.452.5失败
    4双轴向4.050.0成功
    下载: 导出CSV
  • [1] MASTORAKOS E. Forced ignition of turbulent spray flames[J]. Proceedings of the Combustion Institute,2017,36(2): 2367-2383. doi: 10.1016/j.proci.2016.08.044
    [2] 李明磊,吴宁,侯凌云,等. 强湍流下点火及火焰传播机理研究进展[J]. 实验流体力学,2015,29(4): 1-11. doi: 10.11729/syltlx20150060

    LI Minglei,WU Ning,HOU Lingyun,et al. Research progress on ignition and flame propagation in highly turbulent flows[J]. Journal of Experiments in Fluid Mechanics,2015,29(4): 1-11. (in Chinese) doi: 10.11729/syltlx20150060
    [3] TEETS R E,SELL J A. Calorimetry of ignition sparks[J]. SAE Transactions Journal of Engines,1988,97(6): 371-383.
    [4] ESCLAPEZ L,COLLIN-BASTIANI F,RIBER E,et al. A statistical model to predict ignition probability[J]. Combustion and Flame,2021,225(3): 180-195.
    [5] READ R W,ROGERSON J W,HOCHGREB S. Flame imaging of gas-turbine relight[J]. AIAA Journal,2010,48(9): 1916-1927. doi: 10.2514/1.J050105
    [6] 刘桂桂,林宇震,胡好生,等. 旋流杯一级旋流数变化对点火性能的影响[J]. 北京航空航天大学学报,2015,41(6): 1117-1121.

    LIU Guigui,LIN Yuzhen,HU Haosheng,et al. Effect of swirl cup's primary swirl number on ignition performance[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(6): 1117-1121. (in Chinese)
    [7] 代威,林宇震,张弛. 第2级径向旋流器旋流数对燃烧室点火和贫油熄火性能的影响[J]. 航空动力学报,2015,30(5): 1092-1098.

    DAI Wei,LIN Yuzhen,ZHANG Chi. Effects of swirl number of second stage radial swirler on combustor ignition and lean blow-out performances[J]. Journal of Aerospace Power,2015,30(5): 1092-1098. (in Chinese)
    [8] 康尧,林宇震,蒋尧,等. 旋流杯套筒混合段长度对点火特性的影响[J]. 航空动力学报,2016,31(9): 2095-2103.

    KANG Yao,LIN Yuzhen,JIANG Yao,et al. Effects of sleeve mixing length of swirl cup on the ignition characteristics[J]. Journal of Aerospace Power,2016,31(9): 2095-2103. (in Chinese)
    [9] 罗国良,宋双文,胡好生,等. 旋流杯空气雾化喷嘴套筒出口形状对小型燃烧室点火性能的影响[J]. 航空动力学报,2011,26(8): 1708-1712.

    LUO Guoliang,SONG Shuangwen,HU Haosheng,et al. Influences of the swirl cup flares design on the small combustor ignition performances[J]. Journal of Aerospace Power,2011,26(8): 1708-1712. (in Chinese)
    [10] 莫妲,万斌,王新竹,等. 三旋流燃烧室点火阶段燃烧性能[J]. 航空动力学报,2020,35(8): 1594-1600.

    MO Da,WAN Bin,WANG Xinzhu,et al. Combustion performance of triple swirler combustor in ignition stage[J]. Journal of Aerospace Power,2020,35(8): 1594-1600. (in Chinese)
    [11] BOILEAU M,STAFFELBACH G,CUENOT B,et al. LES of an ignition sequence in a gas turbine engine[J]. Combustion and Flame,2008,154(1/2): 2-22.
    [12] 夏一帆. 面向航空发动机燃烧室点火问题的数值计算方法研究[D]. 杭州:浙江大学,2019.

    XIA Yifan. A study of numerical methods for the ignition process in aeroengine combustors[D]. Hangzhou:Zhejiang University,2019. (in Chinese)
    [13] 夏一帆,赵冬梅,葛海文,等. 环形燃烧室点火过程的实验与数值研究[J]. 浙江大学学报(工学版),2020,54(2): 416-424. doi: 10.3785/j.issn.1008-973X.2020.02.024

    XIA Yifan,ZHAO Dongmei,GE Haiwen,et al. Experimental and numerical investigations of ignition process in annular combustor[J]. Journal of Zhejiang University (Engineering Science),2020,54(2): 416-424. (in Chinese) doi: 10.3785/j.issn.1008-973X.2020.02.024
    [14] MARCHIONE T,AHMED S F,MASTORAKOS E. Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks[J]. Combustion and Flame,2009,156(1): 166-180. doi: 10.1016/j.combustflame.2008.10.003
    [15] 江洋. 燃烧室点火过程大涡数值模拟方法研究[D]. 南京:南京航空航天大学,2017.

    JIANG Yang. Research on large eddy simulation of ignition sequence of combustor[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2017.(in Chinese)
    [16] JONES W P,TYLISZCZAK A. Large eddy simulation of spark ignition in a gas turbine combustor[J]. Flow Turbulence and Combustion,2010,85(3/4): 711-734.
    [17] 王凯兴,刘富强,范雄杰,等. 点火位置对中心分级燃烧室点火过程影响的研究[J/OL]. [2022-04-20]. https://doi.org/10.13675/j.cnki.tjjs.200699.
    [18] 李承钰. 双级旋流器燃烧室点火及熄火特性研究[D]. 西安:西北工业大学,2019.

    LI Chengyu. Research on performance of flame ignition and flameout of two-stage cyclone combustor[D]. Xi’an: Northwestern Polytechnical University,2019. (in Chinese)
    [19] 高昭,刘玉英,顾鹏程. 旋流杯近场液雾SMD的空间分布模型[J]. 航空动力学报,2020,35(9): 1812-1821. doi: 10.13224/j.cnki.jasp.2020.09.003

    GAO Zhao,LIU Yuying,GU Pengcheng. Model of spatial SMD distribution of spray at the near-field of swirl cup[J]. Journal of Aerospace Power,2020,35(9): 1812-1821. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.09.003
    [20] COLIN O,DUCROS F,VEYNANTE D,et al. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids,2000,12(7): 1843-1863. doi: 10.1063/1.870436
    [21] FRANZELLI B,RIBER E,SANJOS M,et al. A two-step chemical scheme for kerosene-air premixed flames[J]. Combustion and Flame,2010,157(7): 1364-1373. doi: 10.1016/j.combustflame.2010.03.014
    [22] WERNER H,WENGLE H. Large-eddy simulation of turbulent flow over and around a cube in a plate channel[C]//Proceedings of the Turbulent Shear Flows 8,Berlin:Springer,1993:155-168.
    [23] LACAZE G,RICHARDSON E,POINSOT T. Large eddy simulation of spark ignition in a turbulent methane jet[J]. Combustion and Flame,2009,156(10): 1993-2009. doi: 10.1016/j.combustflame.2009.05.006
    [24] YANG Siheng,ZHANG Chi,LIN Yuzhen,et al. Experimental investigation of the ignition process in a separated dual-swirl spray flame[J].Combustion and Flame,2020,219(9):161-177.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  136
  • HTML浏览量:  24
  • PDF量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 网络出版日期:  2022-09-20

目录

    /

    返回文章
    返回