留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热电偶非稳态测温误差特性一维分析

郭苗昕 冯青 畅然 樊光亚 林阿强 陈燕 刘高文

郭苗昕, 冯青, 畅然, 等. 热电偶非稳态测温误差特性一维分析[J]. 航空动力学报, 2024, 39(3):20220235 doi: 10.13224/j.cnki.jasp.20220235
引用本文: 郭苗昕, 冯青, 畅然, 等. 热电偶非稳态测温误差特性一维分析[J]. 航空动力学报, 2024, 39(3):20220235 doi: 10.13224/j.cnki.jasp.20220235
GUO Miaoxin, FENG Qing, CHANG Ran, et al. One-dimensional analysis of unsteady temperature measurement error characteristics of thermocouple[J]. Journal of Aerospace Power, 2024, 39(3):20220235 doi: 10.13224/j.cnki.jasp.20220235
Citation: GUO Miaoxin, FENG Qing, CHANG Ran, et al. One-dimensional analysis of unsteady temperature measurement error characteristics of thermocouple[J]. Journal of Aerospace Power, 2024, 39(3):20220235 doi: 10.13224/j.cnki.jasp.20220235

热电偶非稳态测温误差特性一维分析

doi: 10.13224/j.cnki.jasp.20220235
基金项目: 广东省基础与应用基础研究基金(2023A1515011597); 航空发动机及燃气轮机基础科学中心项目(P2022-A-Ⅱ-007-001)
详细信息
    作者简介:

    郭苗昕(1998-),女,硕士生,主要从事航空发动机空气系统和旋转盘腔中的流动换热方面的研究

    通讯作者:

    陈 燕(1975-),女,副教授,博士,主要从事航空发动机空气系统与旋转盘腔中的流动换热方面的研究。E-mail:chenyan@nwpu.edu.cn

  • 中图分类号: V231.3

One-dimensional analysis of unsteady temperature measurement error characteristics of thermocouple

  • 摘要:

    为揭示热电偶非稳态测温误差的影响机制,建立了热电偶测温一维非稳态计算模型,综合评估了不同安装结构、黏合材料和表面传热系数工况对热电偶非稳态测温误差的影响,深入探究了毕渥数对非稳态测温的影响规律。研究结果表明:考虑环境辐射是必要的,与不考虑辐射传热相比测温时间300 s时的温度相差1.48 K。不同的安装方式对测温误差的影响较大,最大测量温差1.85 K。黏合材料的导热系数越大,正规状况阶段非稳态测温误差越小,测温时间150 s后绝对误差小于0.5 K。表面传热系数对非稳态测温误差起着重要的影响,表面传热系数越大,受初始温度场影响的测温误差越大。黏合材料导热系数为2.4 W/(m·K)时,表面传热系数为50~250 W/(m2·K)的范围内测温误差的变化范围为0.2~1.5 K。研究结果为发动机传热实验中壁温非稳态测量提供了参考。

     

  • 图 1  无限大平板一维非稳态导热模型

    Figure 1.  One-dimensional unsteady thermal conduction model for infinite plate

    图 2  实验中测温对象的热电偶安装示意图

    Figure 2.  Schematic diagram of thermocouple installation locations of temperature measurement object in the experiment

    图 3  热电偶测温一维模型

    Figure 3.  One-dimensional model of thermocouple temperature measurement

    图 4  空间离散的热电偶测温一维计算模型

    Figure 4.  One-dimensional calculation model of thermocouple temperature measurement with spatial discrete

    图 5  热电偶测温一维计算模型求解步骤流程图

    Figure 5.  Flow chart of the steps for solving the one-dimensional calculation model of thermocouple temperature measurement

    图 6  未安装热电偶模型计算方法对比

    Figure 6.  Comparison of calculation methods for calculation model without thermocouples installation

    图 7  安装热电偶模型计算方法对比

    Figure 7.  Comparison of calculation methods for the calculation model with thermocouples installation

    图 8  一维传热计算模型考虑辐射的温度随测温时间变化对比图

    Figure 8.  Comparison of temperature changes with the temperature measurement time considering the radiation effect in the one-dimensional heat transfer calculation model

    图 9  不同安装方式的表面温度随时间变化

    Figure 9.  Surface temperature variation with time under different thermocouple installation structures

    图 10  不同的热电偶安装方式的测温误差

    Figure 10.  Temperature measurement error of different thermocouple installation structures

    图 11  黏结材料包裹热电偶模型不同第1层厚度的测温误差

    Figure 11.  Temperature measurement error of different thickness of first layer in thermocouple model wrapped with the bonding material

    图 12  不同黏结材料导热系数对热电偶测温误差的影响

    Figure 12.  Effect of temperature measurement error of thermocouples with thermal conductivity of different bonding material

    图 13  不同表面传热系数工况对热电偶测温误差的影响

    Figure 13.  Effect of temperature measurement error of thermocouples with different surface heat transfer coefficient

    图 14  Fo=0.2时测温模型Bi对测温误差的影响规律

    Figure 14.  Influence of Bi on temperature measurement error when Fo=0.2

    图 15  Fo=0.55时测温模型Bi对测温误差的影响规律

    Figure 15.  Influence of Bi on temperature measurement error when Fo=0.55

    表  1  热电偶测温一维计算模型的初边值条件

    Table  1.   Initial and boundary conditions of one-dimensional calculation model for thermocouple temperature measurement

    参数数值
    热流体温度/K330
    平板初始温度/K300
    表面传热系数/(W/(m2·K))50~250
    黏合材料的导热系数/(W/(m·K))0.05~3.2
    总传热时间/s300
    下载: 导出CSV
  • [1] BASHA M,SHAAHID S M,AL-HADHRAMI L. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants[J]. Thermal Science,2013,17(4): 1107-1117. doi: 10.2298/TSCI110708042B
    [2] SOUSA J,VILLAFAÑE L,PANIAGUA G. Thermal analysis and modeling of surface heat exchangers operating in the transonic regime[J]. Energy,2014,64: 961-969. doi: 10.1016/j.energy.2013.11.032
    [3] CHANDRASEKARAN N,GUHA A. Development and optimization of a sustainable turbofan aeroengine for improved performance and emissions[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2013,227(11): 1701-1719. doi: 10.1177/0954410012462183
    [4] 杨灿,吴伟力,熊义彬,等. 航空发动机燃烧室出口高温热电偶校准技术[J]. 航空动力学报,2016,31(4): 769-774. doi: 10.13224/j.cnki.jasp.2016.04.001

    YANG Can,WU Weili,XIONG Yibin,et al. Calibration technology of high-temperature thermocouple for combustor exit of an aero-engine[J]. Journal of Aerospace Power,2016,31(4): 769-774. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.04.001
    [5] ZOU Zhengping,YANG Weiping,ZHANG Weihao,et al. Numerical modeling of steady state errors for shielded thermocouples based on conjugate heat transfer analysis[J]. International Journal of Heat and Mass Transfer,2018,119: 624-639. doi: 10.1016/j.ijheatmasstransfer.2017.11.034
    [6] JHAJJ K S, CARON E F J R, CHESTER N L, et al. Accuracy of thermocouples in transient surface temperature measurements dominated by radiant heating[R]. ASME Paper IMECE2014-38243, 2014.
    [7] TSZENG T C,SARAF V. A study of fin effects in the measurement of temperature using surface-mounted thermocouples[J]. Journal of Heat Transfer,2003,125(5): 926-935. doi: 10.1115/1.1597622
    [8] WOODBURY K A,GUPTA A. A simple 1D sensor model to account for deterministic thermocouple errors (bias) in the solution of the inverse heat conduction problem[J]. Inverse Problems in Science and Engineering,2008,16(1): 21-37. doi: 10.1080/17415970701198241
    [9] PARK J E, CHILDS KW, LUDTKA G M, et al. Correction of errors in intrinsic thermocouple signals recorded during quenching [C]//National Heat Transfer Conference. Minneapolis, US: University of Minnesota System, 1991: 28-31.
    [10] VAŹQUEZ R, SAŃCHEZ J M. Temperature measurement system for low pressure ratio turbine testing[C]//Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air. Atlanta, Georgia, US: ASME, 2003: 6–19.
    [11] STRAUBINGER D, ILLÉS B, BERÉNYI R, et al. Simulation of reflow-based heat transfer on different thermocouple constructions[C]//2020 43rd International Spring Seminar on Electronics Technology. Piscataway, US: IEEE, 2020: 1-6.
    [12] 杨伟平,张伟昊,邹正平,等. 屏蔽式总温热电偶的稳态误差分析及改型设计[J]. 航空动力学报,2018,33(11): 2784-2795. doi: 10.13224/j.cnki.jasp.2018.11.025

    YANG Weiping,ZHANG Weihao,ZOU Zhengping,et al. Steady state error estimation and modification of a shielded thermocouple[J]. Journal of Aerospace Power,2018,33(11): 2784-2795. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.11.025
    [13] 白杰,陈昭,王伟. 热电偶温度测量的误差及影响因素分析[J]. 机床与液压,2017,45(22): 138-141, 183. doi: 10.3969/j.issn.1001-3881.2017.22.036

    BAI Jie,CHEN Zhao,WANG Wei. Error and influence factor analysis of thermocouple temperature measurement[J]. Machine Tool & Hydraulics,2017,45(22): 138-141, 183. (in Chinese) doi: 10.3969/j.issn.1001-3881.2017.22.036
    [14] 李伟. 热电偶测温误差的来源与处理[C]//第十八届中国航空测控技术年会论文集. 青岛: 中国航空工业技术装备工程协会, 2021: 256-259.
    [15] GRECH A, SANT T, FARRUGIA M. The effects of thermocouple materials and insulating mica in an erodable surface thermocouple[C]// Proceedings of 2008 ASME Summer Heat Transfer Conference. Jacksonville, US: ASME, 2008: 10-14.
    [16] POPE I,HIDALGO J P,HADDEN R M,et al. A simplified correction method for thermocouple disturbance errors in solids[J]. International Journal of Thermal Sciences,2022,172: 107324. doi: 10.1016/j.ijthermalsci.2021.107324
    [17] HAGER N E Jr. Thermocouple probe for surface-temperature measurement[J]. Review of Scientific Instruments,1985,56(3): 421-426. doi: 10.1063/1.1138316
    [18] TAN G E, CARTE C, FAN Yuehong. Thermocouple attachment methodology for memory[C]//2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm). Piscataway, US: IEEE, 2021: 1150-1153.
    [19] 陈龙,陈跃飞,杨子锷,等. 热电偶测量误差及其注意事项[J]. 计量与测试技术,2017,44(2): 43-46. doi: 10.15988/j.cnki.1004-6941.2017.02.021

    CHEN Long,CHEN Yuefei,YANG Zie,et al. Thermocouple measurement error and its matters needing attention[J]. Metrology & Measurement Technique,2017,44(2): 43-46. (in Chinese) doi: 10.15988/j.cnki.1004-6941.2017.02.021
    [20] 孙昊博,毛晓奇,朱传龙. 航空发动机热电偶传感器稳态测温偏差分析[J]. 航空动力学报,2022,37(9): 2009-2016. doi: 10.13224/j.cnki.jasp.20210417

    SUN Haobo,MAO Xiaoqi,ZHU Chuanlong. Analysis of steady-state temperature measurement deviation of thermocouple sensors on aeroengine[J]. Journal of Aerospace Power,2022,37(9): 2009-2016. (in Chinese) doi: 10.13224/j.cnki.jasp.20210417
    [21] 杨兆欣,曾星,张文清. 气体介质条件下的热电偶动态特性[J]. 航空动力学报,2020,35(12): 2514-2520. doi: 10.13224/j.cnki.jasp.2020.12.005

    YANG Zhaoxin,ZENG Xing,ZHANG Wenqing. Dynamic characteristics of thermocouple in gas medium[J]. Journal of Aerospace Power,2020,35(12): 2514-2520. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.12.005
    [22] 季江华,石坤田,黄波. 热电偶冷热端动态特性对测温精度影响研究[J]. 科学技术创新,2018(20): 58-59. doi: 10.3969/j.issn.1673-1328.2018.20.037

    JI Jianghua,SHI Kuntian,HUANG Bo. Study on the influence of dynamic characteristics of thermocouple cold and hot ends on temperature measurement accuracy[J]. Scientific and Technological Innovation,2018(20): 58-59. (in Chinese) doi: 10.3969/j.issn.1673-1328.2018.20.037
    [23] 季念,马朝臣. 一种屏蔽式总温探头设计及其测量误差估计[J]. 航空动力学报,2023,38(7): 1749-1761. doi: 10.13224/j.cnki.jasp.20210620

    JI Nian,MA Chaochen. Design and measurement error estimation of a shielded total temperature probe[J]. Journal of Aerospace Power,2023,38(7): 1749-1761. (in Chinese) doi: 10.13224/j.cnki.jasp.20210620
    [24] 韩省思, 毛军逵. 热电偶埋设方式对测温精度的影响研究[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集: S07发动机热管理相关技术. 昆明: 中国航天第三专业信息网, 2019: 141-152.
    [25] 杜冠廷. 热电偶测量表面温升的误差和优化研究[D]. 广州: 华南理工大学, 2023.

    DU Guanting. Research on error and optimization of thermocouple measuring surface temperature rise[D]. Guangzhou: South China University of Technology, 2023. (in Chinese)
    [26] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
    [27] 曹玉璋, 邱绪光. 实验传热学[M]. 北京: 国防工业出版社, 1998.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  144
  • HTML浏览量:  62
  • PDF量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 网络出版日期:  2023-07-06

目录

    /

    返回文章
    返回