留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜射流撞壁成膜的液膜形状半经验模型

章宏宙 黄勇 袁韦韦

章宏宙, 黄勇, 袁韦韦. 斜射流撞壁成膜的液膜形状半经验模型[J]. 航空动力学报, 2022, 37(11):2534-2543 doi: 10.13224/j.cnki.jasp.20220238
引用本文: 章宏宙, 黄勇, 袁韦韦. 斜射流撞壁成膜的液膜形状半经验模型[J]. 航空动力学报, 2022, 37(11):2534-2543 doi: 10.13224/j.cnki.jasp.20220238
ZHANG Hongzhou, HUANG Yong, YUAN Weiwei. Semi-empirical model for shape of liquid sheet formed by oblique jet impinging onto wall[J]. Journal of Aerospace Power, 2022, 37(11):2534-2543 doi: 10.13224/j.cnki.jasp.20220238
Citation: ZHANG Hongzhou, HUANG Yong, YUAN Weiwei. Semi-empirical model for shape of liquid sheet formed by oblique jet impinging onto wall[J]. Journal of Aerospace Power, 2022, 37(11):2534-2543 doi: 10.13224/j.cnki.jasp.20220238

斜射流撞壁成膜的液膜形状半经验模型

doi: 10.13224/j.cnki.jasp.20220238
详细信息
    作者简介:

    章宏宙(1996-),男,博士生,主要从事雾化机理研究

    通讯作者:

    黄勇(1964-),男,教授、博士生导师,博士,主要从事燃油雾化及燃烧室点火熄火机理研究。E-mail:yhuang@buaa.edu.cn

  • 中图分类号: V434+.1

Semi-empirical model for shape of liquid sheet formed by oblique jet impinging onto wall

  • 摘要:

    通过求解斜射流撞壁形成液膜的厚度和速度分布,并结合能量方程和经验近似,得到预测液膜边界的半经验模型。该模型能直观地描述各因素的影响,无需数值迭代求解复杂方程。为了验证模型的准确性,开展了实验研究,分析了射流速度、撞击角度、黏性和表面张力的影响,然后比较了实验结果和模型结果。结果表明:该模型能很好地预测液膜边界,实验和模型边界曲线的相关系数都在0.99以上,即便对下游流动复杂区域也有很高的预测精度,此时误差约为1%。

     

  • 图 1  液膜流线图

    Figure 1.  Streamline pattern of a liquid sheet

    图 2  液膜示意图

    Figure 2.  Schematic diagram of a liquid sheet

    图 3  流量分配比例

    Figure 3.  Flow distribution ratio

    图 4  表面速度变化 (θ=30°)

    Figure 4.  Surface velocity variation (θ=30°)

    图 5  厚度变化

    Figure 5.  Thickness variation

    图 6  实验设置

    Figure 6.  Experimental setup

    图 7  液膜特征

    Figure 7.  Characteristics of the liquid sheet

    图 8  不同工况下的液膜原图

    Figure 8.  Raw images of the liquid sheet under different experimental conditions

    图 9  液膜边界识别

    Figure 9.  Boundary identification of the liquid sheet

    图 10  液膜边界的坐标提取

    Figure 10.  Coordinate extraction of the liquid sheet boundary

    图 11  射流速度的影响

    Figure 11.  Effects of jet velocity

    图 12  撞击角度的影响

    Figure 12.  Effects of impinging angle

    图 13  黏性的影响

    Figure 13.  Effects of viscosity

    图 14  表面张力的影响

    Figure 14.  Effects of surface tension

    图 15  各工况下边界径向长度的相对误差

    Figure 15.  Relative errors of radial length of boundary under all working conditions

    表  1  实验工况

    Table  1.   Experimental conditions

    工况$ {u_0} $/
    (m/s)
    $ \theta $/
    (°)
    $ \rho $/
    (kg/m3
    $ \mu $/
    (mPa·s)
    $ \sigma $/
    (mN/m)
    19.830997.60.9472.88
    213.430997.60.9472.88
    318.930997.60.9472.88
    49.845997.60.9472.88
    59.875997.60.9472.88
    613.4301109.25.4872.88
    713.4301134.69.5772.88
    813.430997.60.9440.62
    913.430997.60.9436.81
    下载: 导出CSV
  • [1] 唐亮,李平,周立新. 液体火箭发动机液膜冷却研究综述[J]. 火箭推进,2020,46(1): 1-12. doi: 10.3969/j.issn.1672-9374.2020.01.001

    TANG Liang,LI Ping,ZHOU Lixin. Review on liquid film cooling of liquid rocket engine[J]. Journal of Rocket Propulsion,2020,46(1): 1-12. (in Chinese) doi: 10.3969/j.issn.1672-9374.2020.01.001
    [2] VOLKMANN J C, MCLEOD J M, CLAFLIN S E. Investigation of throat film coolant for advanced LOx/RP-1 thrust chambers[R].AIAA-1991-1979,1991.
    [3] 吴凌峰,杨成虎,姚锋,等. 单股自由圆射流撞壁雾化实验[J]. 火箭推进,2020,46(1): 44-51. doi: 10.3969/j.issn.1672-9374.2020.01.006

    WU Lingfeng,YANG Chenghu,YAO Feng,et al. Atomization experiment of single free circular jet impinging against wall[J]. Journal of Rocket Propulsion,2020,46(1): 44-51. (in Chinese) doi: 10.3969/j.issn.1672-9374.2020.01.006
    [4] PETRUCHIK A I,SOLODUKHIN A D,FISENKO S P. Simulation of cooling of water droplet and film flows in large natural wet cooling towers[J]. Journal of Engineering Physics and Thermophysics,2001,74(1): 62-68. doi: 10.1023/A:1016673803772
    [5] SCHULZ F,BEYRAU F. The effect of operating parameters on the formation of fuel wall films as a basis for the reduction of engine particulate emissions[J]. Fuel,2019,238: 375-384. doi: 10.1016/j.fuel.2018.10.109
    [6] CHEN B,FENG L,WANG Y,et al. Spray and flame characteristics of wall-impinging diesel fuel spray at different wall temperatures and ambient pressures in a constant volume combustion vessel[J]. Fuel,2019,235: 416-425. doi: 10.1016/j.fuel.2018.07.154
    [7] FENG L,SUN X,PAN X,et al. Gasoline spray characteristics using a high pressure common rail diesel injection system by the method of laser induced exciplex fluorescence[J]. Fuel,2021,302: 121174.1-121174.14.
    [8] INAMURA T,SHIROTA M. Effect of velocity profile of impinging jets on sheet characteristics formed by impingement of two round liquid jets[J]. International Journal of Multiphase Flow,2014,60: 149-160. doi: 10.1016/j.ijmultiphaseflow.2013.12.006
    [9] KIBAR A. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation[J]. Fluid Dynamics Research,2015,48(1): 015501.1-015501.20.
    [10] DAIRAY T,FORTUNE V,LAMBALLAIS E,et al. LES of a turbulent jet impinging on a heated wall using high-order numerical schemes[J]. International Journal of Heat and Fluid Flow,2014,50: 177-187. doi: 10.1016/j.ijheatfluidflow.2014.08.001
    [11] TAYLOR G. Oblique impact of a jet on a plane surface[J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences,1966,260: 96-100.
    [12] HASSON D,PECK R E. Thickness distribution in a sheet formed by impinging jets[J]. AIChE Journal,1964,10(5): 752-754. doi: 10.1002/aic.690100533
    [13] GLAUERT M B. The wall jet[J]. Journal of Fluid Mechanics,1956,1(6): 625-643. doi: 10.1017/S002211205600041X
    [14] WATSON E J. The radial spread of a liquid jet over a horizontal plane[J]. Journal of Fluid Mechanics,1964,20(3): 481-499. doi: 10.1017/S0022112064001367
    [15] NABER J D, REITZ R D. Modeling Engine spray/wall impingement[C]// SAE International Congress & Exposition. Detroit, US: SAE, 1988: 118-140.
    [16] IBRAHIM E A,PRZEKWAS A J. Impinging jets atomization[J]. Physics of Fluids A Fluid Dynamics,1991,3(12): 2981-2987. doi: 10.1063/1.857840
    [17] AZUMA T,HOSHINO T. The radial flow of a thin liquid film: 2nd report, liquid film thickness[J]. Bulletin of JSME,1984,27(234): 2747-2754. doi: 10.1299/jsme1958.27.2747
    [18] INAMURA T,YANAOKA H,TOMODA T. Prediction of mean droplet size of sprays issued from wall impingement injector[J]. AIAA Journal,2004,42(3): 614-621. doi: 10.2514/1.9112
    [19] INAMURA T,AMAGASAKI S,YANAOKA H. Thickness of liquid film formed by impinging jets on a concave wall[J]. Journal of Propulsion and Power,2007,23(3): 612-617. doi: 10.2514/1.27691
    [20] 林庆国,杨成虎,刘犇. 射流角度和壁面曲率对撞壁液膜的影响[J]. 国防科技大学学报,2013,35(2): 17-21. doi: 10.3969/j.issn.1001-2486.2013.02.004

    LIN Qingguo,YANG Chenghu,LIU Ben. Effect of impingement angle and wall curvature on liquid film[J]. Journal of National University of Defense Technology,2013,35(2): 17-21. (in Chinese) doi: 10.3969/j.issn.1001-2486.2013.02.004
    [21] KATE R P,DAS P K,CHAKRABORTY S. Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface[J]. Journal of Fluid Mechanics,2007,573: 247-263. doi: 10.1017/S0022112006003818
    [22] YANG L J,LI P H,FU Q F. Liquid sheet formed by a Newtonian jet obliquely impinging on pro/hydrophobic surfaces[J]. International Journal of Multiphase Flow,2020,125: 103192.1-103192.9.
    [23] 唐亮, 胡锦华, 刘计武, 等 倾斜射流撞壁实验研究及液膜几何参数建模[J]. 航空学报, 2020, 41(12): 163-172.

    TANG Liang, HU Jinhua, LIU Jiwu, et al. Experimental study on oblique jet wall impingement and geometrical parameter model of liquid film[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 163-172. (in Chinese)
    [24] 唐亮,李平,周立新,等. 倾斜射流撞壁形成的液膜外形的理论建模[J]. 推进技术,2021,42(2): 327-334. doi: 10.13675/j.cnki.tjjs.190766

    TANG Liang,LI Ping,ZHOU Lixin,et al. Theoretical modeling of liquid sheet shape formed by oblique jet impinging onto wall[J]. Journal of Propulsion Technology,2021,42(2): 327-334. (in Chinese) doi: 10.13675/j.cnki.tjjs.190766
    [25] WANG R,HUANG Y,FENG X,et al. Semi-empirical model for the engine liquid fuel sheet formed by the oblique jet impinging onto a plate[J]. Fuel,2018,233: 84-93. doi: 10.1016/j.fuel.2018.06.028
    [26] 唐树江,李明军. 平板层流边界层速度分布的一种最佳近似解析解[J]. 湘潭大学自然科学学报,2013,35(1): 18-20. doi: 10.3969/j.issn.1000-5900.2013.01.004

    TANG Shujiang,LI Mingjun. An optimum approximate analytical solution for laminar boundary layer velocity with flat distribution[J]. Natural Science Journal of Xiangtan University,2013,35(1): 18-20. (in Chinese) doi: 10.3969/j.issn.1000-5900.2013.01.004
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  93
  • HTML浏览量:  73
  • PDF量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 网络出版日期:  2022-09-09

目录

    /

    返回文章
    返回