留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优输运无网格方法的热障涂层氧化层生长模拟

许洪斌 樊江 荆甫雷 廖祜明 黎波 樊宗岳

许洪斌, 樊江, 荆甫雷, 等. 基于最优输运无网格方法的热障涂层氧化层生长模拟[J]. 航空动力学报, 2022, 37(10):2104-2111 doi: 10.13224/j.cnki.jasp.20220239
引用本文: 许洪斌, 樊江, 荆甫雷, 等. 基于最优输运无网格方法的热障涂层氧化层生长模拟[J]. 航空动力学报, 2022, 37(10):2104-2111 doi: 10.13224/j.cnki.jasp.20220239
XU Hongbin, FAN Jiang, JING Fulei, et al. Simulation of oxide growth in thermal barrier coating based on optimal transport meshless method[J]. Journal of Aerospace Power, 2022, 37(10):2104-2111 doi: 10.13224/j.cnki.jasp.20220239
Citation: XU Hongbin, FAN Jiang, JING Fulei, et al. Simulation of oxide growth in thermal barrier coating based on optimal transport meshless method[J]. Journal of Aerospace Power, 2022, 37(10):2104-2111 doi: 10.13224/j.cnki.jasp.20220239

基于最优输运无网格方法的热障涂层氧化层生长模拟

doi: 10.13224/j.cnki.jasp.20220239
基金项目: 国家自然科学基金(51905510)
详细信息
    作者简介:

    许洪斌(1994-),男,博士生,主要研究方向为多学科优化设计、发动机结构设计

    通讯作者:

    樊江(1973-),男,副教授、博士生导师,博士,主要研究方向为多学科优化设计、发动机结构设计。E-mail: fanjiang@buaa.edu.cn

  • 中图分类号: V231

Simulation of oxide growth in thermal barrier coating based on optimal transport meshless method

  • 摘要:

    在自研的最优输运无网格(OTM)框架下,针对热障涂层氧化层(TGO)生长力学等效模型开发了厚度增长算法,模拟TGO各向异性氧化生长过程。利用该方法以TGO层典型的转折段为对象,研究了热循环载荷作用下的TGO层生长过程中应力、位移随周期载荷的变化规律。仿真结果与热障涂层试验结果吻合。结果表明:该方法能很好模拟模拟界面生长过程中出现的褶皱现象,与有限元相比单元变形均匀,适合障涂层TGO层生长过程的数值模拟。热障涂层应力最大位置主要出现在凸起位置,凸起处的横向变化具有加剧TGO层界面大变形的趋势。

     

  • 图 1  TBC典型结构

    Figure 1.  Typical structure of TBC

    图 2  OTM将连续介质离散为两种不同节点[17]

    Figure 2.  OTM discretizes the solid into two different nodes[17]

    图 3  OTM框架下的TGO厚度增长算法

    Figure 3.  TGO thickness growth algorithm under OTM framework

    图 4  TGO层生长应变

    Figure 4.  TGO layer growth strain

    图 5  TBC真实界面形貌

    Figure 5.  TBC real interface

    图 6  力学等效模型

    Figure 6.  Mechanical equivalent model

    图 7  温度载荷

    Figure 7.  Temperature load

    图 8  OTM模拟结果

    Figure 8.  OTM simulation result

    图 9  OTM位移分布

    Figure 9.  OTM displacement distribution

    图 10  有限元方法位移分布[20]

    Figure 10.  FEM displacement distribution[20]

    图 11  OTM模拟结果与真实形貌对比

    Figure 11.  OTM simulation results compared with the real morphology

    图 12  TGO层厚度增长(单位:μm)

    Figure 12.  Increase of TGO layer thickness (unit:μm)

    图 13  S11应力分布

    Figure 13.  S11 stress distribution

  • [1] 徐惠彬,宫声凯. 航空发动机热障涂层材料体系的研究[J]. 航空学报,2000,21(1): 8-13.

    XU Huibin,GONG Shengkai. Study on thermal barrier coating material system of aero-engine[J]. Journal of Aeronautics,2000,21(1): 8-13. (in Chinese)
    [2] 刘纯波,林锋,蒋显亮. 热障涂层的研究现状与发展趋势[J]. 中国有色金属学报,2007,17(1): 1-13. doi: 10.3321/j.issn:1004-0609.2007.01.001

    LIU Chunbo,LIN Feng,JIANG Xianliang. Research status and development trend of thermal barrier coatings[J]. Chinese Journal of Nonferrous Metals,2007,17(1): 1-13. (in Chinese) doi: 10.3321/j.issn:1004-0609.2007.01.001
    [3] 贾攀峰,齐红宇,李少林,等. 氧化层非均匀增长对热障涂层应力分布的影响[J]. 航空动力学报,2018,33(7): 1606-1611.

    JIA Panfeng,QI Hongyu,LI Shaolin,et al. Effect of non-uniform growth of oxide layer on stress distribution of thermal barrier coating[J]. Journal of Aerospace Power,2018,33(7): 1606-1611. (in Chinese)
    [4] 刘奇星. 热障涂层涡轮叶片失效的有限元模拟[D]. 湖南 湘潭:湘潭大学,2012.

    LIU Qixing. Finite element simulation of turbine blade failure with thermal barrier coating[D]. Xiangtan Hunan: Xiangtan University,2012. (in Chinese)
    [5] 周益春,刘奇星,杨丽,等. 热障涂层的破坏机理与寿命预测[J]. 固体力学学报,2010,36(5): 504-531.

    ZHOU Yichun,LIU Qixing,YANG Li,et al. Failure mechanism and life prediction of thermal barrier coatings[J]. Journal of Solid Mechanics,2010,36(5): 504-531. (in Chinese)
    [6] WEN Q,JING F L,ZHANG C X,et al. Review of numerical simulation of TGO growth in thermal barrier coatings[J]. Cmes-Computer Modeling in Engineering and Sciences,2022,132(2): 361-391. doi: 10.32604/cmes.2022.019528
    [7] 郭兴旺,丁蒙蒙. 热障涂层厚度及厚度不均热无损检测的数值模拟[J]. 航空学报,2010,31(1): 198-203.

    GUO Xingwang,DING Mengmeng. Numerical simulation of thermal nondestructive testing for thickness and uneven thickness of thermal barrier coating[J]. Journal of Aeronautics,2010,31(1): 198-203. (in Chinese)
    [8] 肖逸奇. 涡轮叶片热障涂层服役可靠性评价及其应用研究[D]. 湖南 湘潭:湘潭大学,2019.

    XIAO Yiqi. Service reliability evaluation and application of thermal barrier coating for turbine blades[D]. Xiangtan Hunan:Xiangtan University,2019.(in Chinese)
    [9] 张雄,宋康祖. 无网格法研究进展及其应用[J]. 计算力学学报,2003,21(6): 730-742. doi: 10.3969/j.issn.1007-4708.2003.06.015

    ZHANG Xiong,SONG Kangzu. Research progress and application of meshless method[J]. Journal of Computational Mechanics,2003,21(6): 730-742. (in Chinese) doi: 10.3969/j.issn.1007-4708.2003.06.015
    [10] 刘谋斌,宗智,常建忠. 光滑粒子动力学方法的发展与应用[J]. 力学进展,2011,41(2): 217-234.

    LIU Moubin,ZONG Zhi,CHANG Jianzhong. Development and application of smooth particle dynamics method[J]. Mechanical Progress,2011,41(2): 217-234. (in Chinese)
    [11] 顾元通,丁桦. 无网格法及其最新进展[J]. 力学进展,2005,35(3): 323-337. doi: 10.3321/j.issn:1000-0992.2005.03.003

    GU Yuantong,DING Hua. Meshless method and its latest development[J]. Mechanical Progress,2005,35(3): 323-337. (in Chinese) doi: 10.3321/j.issn:1000-0992.2005.03.003
    [12] 杨秀峰,刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案[J]. 物理学报,2012,61(22): 261-268. doi: 10.7498/aps.61.224701

    YANG Xiufeng,LIU Moubin. An improved scheme of smooth particle dynamics SPH method for stress instability[J]. Journal of Physics,2012,61(22): 261-268. (in Chinese) doi: 10.7498/aps.61.224701
    [13] LI B. The optimal transportation method in solid mechanics[D]. Pasadena,US:California Institute of Technology,2009.
    [14] ARROYO M,ORTIZ M. Local maximum-entropy approximation schemes:a seamless bridge between finite elements and meshfree methods[J]. International Journal for Numerical Methods in Engineering,2006,65(13): 2167-2202. doi: 10.1002/nme.1534
    [15] 周浩,李毅,刘海,等. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用[J]. 物理学报,2021,89(24): 24-35.

    ZHOU Hao,LI Yi,LIU Hai,et al. Optimal transport meshless method and its application in the simulation of droplet surface tension effect[J]. Journal of Physics,2021,89(24): 24-35. (in Chinese)
    [16] LI B,HABBAL F,ORTIZ M. Optimal transportation meshfree approximation schemes for fluid and plastic flows[J]. International Journal for Numerical Methods in Engineering,2010,83(12): 1541-1579. doi: 10.1002/nme.2869
    [17] LI B,KIDANE A,RAVICHANDRAN G,et al. Verification and validation of the optimal transportation meshfree (OTM) simulation of terminal ballistics[J]. International Journal of Impact Engineering,2012,42(1): 25-36.
    [18] FAN J,LIAO H,WANG H,et al. Local maximum-entropy based surrogate model and its application to structural reliability analysis[J]. Structural and Multidisciplinary Optimization,2018,57(1): 373-392. doi: 10.1007/s00158-017-1760-y
    [19] SUKUMAR N. Maximum entropy approximation[C]//Bayesian Inference and Maximum Entropy Methods in Science and Engineering.San José,US:San José State University,2005:337-344.
    [20] KARLSSON A M,LEVI C G,EVANS A G. A model study of displacement instabilities during cyclic oxidation[J]. Acta Materialia,2002,50(6): 1263-1273. doi: 10.1016/S1359-6454(01)00403-7
  • 加载中
图(13)
计量
  • 文章访问数:  102
  • HTML浏览量:  115
  • PDF量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回