留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶型探针头部对跨声速涡轮叶栅流场的影响

张庆典 马宏伟 杨益 钟亚飞

张庆典, 马宏伟, 杨益, 等. 叶型探针头部对跨声速涡轮叶栅流场的影响[J]. 航空动力学报, 2022, 37(11):2647-2658 doi: 10.13224/j.cnki.jasp.20220241
引用本文: 张庆典, 马宏伟, 杨益, 等. 叶型探针头部对跨声速涡轮叶栅流场的影响[J]. 航空动力学报, 2022, 37(11):2647-2658 doi: 10.13224/j.cnki.jasp.20220241
ZHANG Qingdian, MA Hongwei, YANG Yi, et al. Effect of airfoil probe head on transonic turbine cascade flow field[J]. Journal of Aerospace Power, 2022, 37(11):2647-2658 doi: 10.13224/j.cnki.jasp.20220241
Citation: ZHANG Qingdian, MA Hongwei, YANG Yi, et al. Effect of airfoil probe head on transonic turbine cascade flow field[J]. Journal of Aerospace Power, 2022, 37(11):2647-2658 doi: 10.13224/j.cnki.jasp.20220241

叶型探针头部对跨声速涡轮叶栅流场的影响

doi: 10.13224/j.cnki.jasp.20220241
基金项目: 国家自然科学基金(51776011); 国家科技重大专项(2017-Ⅴ-0016-0068); 国防科技重点实验室基金(2021-JCJQ-LB-062-0204)
详细信息
    作者简介:

    张庆典(1995-),男,博士生,从事叶轮机械气动研究

    通讯作者:

    马宏伟(1967-),男,教授、博士生导师,博士,主要从事叶轮机械气动热力学研究。E-mail:mahw@buaa.edu.cn

  • 中图分类号: V231

Effect of airfoil probe head on transonic turbine cascade flow field

  • 摘要:

    为探究叶型探针头部对跨声速涡轮叶栅流场的影响,采用数值模拟的方法,对叶片前缘的不同叶高位置处装有探头的跨声速涡轮叶栅流场进行了研究。分析了不同攻角下叶片负荷性能变化、流场的旋涡结构、流动损失以及探针的适用性。结果表明:叶型探针头部影响了叶片加载性能,且影响效果受气流攻角的变化明显。气流绕过探针头部后形成较长的流向涡结构。在大的正攻角下叶片吸力面出现附着涡层,该附着涡层是带有探针的叶片负荷性能下降的主要因素。叶型探针对叶栅通道各位置造成的损失占比沿流向逐渐减小,大攻角下叶型探针使栅后流场损失增加7.4%。安装在展向不同位置处的探针都能在整个可调进气攻角范围内具有较好的适用性。

     

  • 图 1  叶片几何形状示意图

    Figure 1.  Schematic diagram of blade

    图 2  计算域和网格

    Figure 2.  Computational domain and mesh

    图 3  湍流模型比选

    Figure 3.  Comparison and validation of turbulence models

    图 4  叶片中径位置处静压系数分布(α= 0°)

    Figure 4.  Static pressure coefficient distribution at midspan of the blade (α= 0°)

    图 5  叶片中径位置处静压系数分布(α= −10°)

    Figure 5.  Static pressure coefficient distribution at midspan of the blade (α= −10°)

    图 6  叶片中径位置处静压系数分布(α=10°)

    Figure 6.  Static pressure coefficient distribution at midspan of the blade (α=10°)

    图 7  不同攻角下叶栅流场轴向压力梯度和马赫数分布云图(左:无探针;右:有探针)

    Figure 7.  Distributions of axial pressure gradient and Mach number in cascade flow field at different incidence angels (left: without probe; right: with probe)

    图 8  叶栅端壁流场旋涡结构 (α=0°,Qnond =100)

    Figure 8.  Vortex structure of secondary flow in cascade endwall (α= 0°, Qnond =100)

    图 9  叶栅端壁流场旋涡结构 (α=10°,Qnond =100)

    Figure 9.  Vortex structure of secondary flow in cascade endwall (α=10°,Qnond =100)

    图 10  叶片吸力面极限流线(α=10°)

    Figure 10.  Limiting streamlines of blade suction surface (α=10°)

    图 11  叶栅通道特征面示意图

    Figure 11.  Schematic diagram of characteristic plane of cascade passage

    图 12  叶栅通道各特征截面马赫数与二次流总压损失分布(α=10°)

    Figure 12.  Distributions of Mach number and total pressure loss of secondary flow on characteristic planes of cascade passage (α =10°)

    图 13  原型叶栅和带有探针的叶栅通道各特征截面质量流量平均的总压损失系数展向分布

    Figure 13.  Spanwise distribution of averaged mass flow rate total pressure loss coefficient on characteristic planes of clean and instrumented cascades

  • [1] 马宏伟,项乐. 探针支杆对压气机转子性能及流场影响的数值模拟研究[J]. 推进技术,2016,37(12): 2288-2295. doi: 10.13675/j.cnki.tjjs.2016.12.011

    MA Hongwei,XIANG Le. Numerical investigation of effects of probe support on performance and flow field of compressor rotor[J]. Journal of Propulsion Technology,2016,37(12): 2288-2295. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.12.011
    [2] YARUSEVYCH S,SULLIVAN P E,KAWALL J G. On vortex shedding from an airfoil in low-Reynolds number flows[J]. Journal of Fluid Mechanics,2009,632: 245-271. doi: 10.1017/S0022112009007058
    [3] BOUTILIER M S H,YARUSEVYCH S. Influence of hot-wire probe and traverse on low-Reynolds-number airfoil experiments[J]. AIAA Journal,2014,52(11): 2619-2623.
    [4] BRENDEL M,MUELLER T. Boundary-layer measurements on an airfoil at low Reynolds numbers[J]. Journal of Aircraft,1988,25(7): 612-617. doi: 10.2514/3.45631
    [5] SEVILLA E. Experimental investigation of the systematic errors of pneumatic pressure probes induced by velocity gradients[D]. Vienna, Austria: Vienna University of Technology, 2002.
    [6] HOENEN H T, KUNTE R, WANICZEK P, et al. Measuring failures and correction methods for pneumatic multi-hole probes[R]. ASME Paper GT2012-68113, 2012.
    [7] XIANG Honghui,GE Ning,HOU Minjie,et al. An experimental investigation of the effects of upstream probe disturbance on compressor cascade performance[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering,2017,231(7): 1248-1257. doi: 10.1177/0954410016652435
    [8] XIANG Honghui,GE Ning,GAO Jie,et al. Experimental investigation of the effect of the probe support tail structure on the compressor cascade flow field[J]. International Journal of Turbo and Jet-Engines,2019,36(1): 9-18.
    [9] MA Hongwei,LI Shaohui,WEI Wei. Effects of probe support on the flow field of a low-speed axial compressor[J]. Journal of Thermal Science,2014,23(2): 120-126. doi: 10.1007/s11630-014-0685-7
    [10] MA Hongwei,LI Shaohui,WEI Wei. Effects of probe support on the stall characteristics of a low-speed axial compressor[J]. Journal of Thermal Science,2016,25(1): 43-49. doi: 10.1007/s11630-016-0832-4
    [11] YANG Yong,XIANG Honghui,GAO Jie,et al. Experimental study of the vibration phenomenon of compressor rotor blade induced by inlet probe support[J]. Journal of Thermal Science,2021,30(5): 1674-1683. doi: 10.1007/s11630-021-1447-y
    [12] ZHONG Yafei, MA Hongwei, YANG Yi. Effects of probe stem surface suction on the aerodynamic performance of a compressor[R]. ASME Paper GT2009-59384, 2009.
    [13] LUO Jun. Analysis of 3D numerical simulation for an airfoil probe in a compressor[C]//Proceedings of Second International Conference on Computer and Electrical Engineering. Los Alamitos, US: IEEE, 2009: 560-562.
    [14] MA Hongwei,JIN Chao,ZHAO Lianpeng,et al. Effects of airfoil-probe tubes on the flow field of a compressor cascade[J]. Journal of Thermal Science,2017,26(4): 321-330. doi: 10.1007/s11630-017-0945-4
    [15] HE Xiang,MA Hongwei,REN Minglin,et al. Investigation of the effects of airfoil-probes on the aerodynamic performance of an axial compressor[J]. Chinese Journal of Aeronautics,2012,25(4): 517-523. doi: 10.1016/S1000-9361(11)60415-9
    [16] NG H C H,COULL J D. Parasitic loss due to leading edge instrumentation on a low-pressure turbine blade[J]. Journal of Turbomachinery,2017,139(4): 041007.1-041007.10.
    [17] UBALD B N,TUCKER P G,CUI J,et al. Numerical analysis of an instrumented turbine blade cascade[J]. Journal of Turbomachinery,2019,141(5): 051013.1-051013.9.
    [18] BOERNER M,BITTER M,NIEHUIS R. On the challenge of five-hole-probe measurements at high subsonic Mach numbers in the wake of transonic turbine cascades[J]. Journal of the Global Power and Propulsion Society,2018,2: 453-464.
    [19] ARTS T,DUBOUE J M,ROLLIN G. Aerothermal performance measurements and analysis of a two-dimensional high turning rotor blade[J]. Journal of Turbomachinery,1998,120(3): 494-499. doi: 10.1115/1.2841745
    [20] KIM J H,LEE S Y,CHUNG J T. Numerical analysis of the aerodynamic performance & heat transfer of a transonic turbine with a partial squealer tip[J]. Applied Thermal Engineering,2019,152: 878-889. doi: 10.1016/j.applthermaleng.2019.02.066
    [21] HUNT J, WRAY A, MOIN P. Eddies, streams, and conver-gence zones in turbulent flows[R]. Palo Alto , US: Center for Turbulence Research, 1988.
    [22] ANTO K, XUE S, NG W F, et al. Effects of tip clearance gap and exit mach number on turbine blade tip and near-tip heat transfer[R]. ASME Paper GT2013-94345, 2013.
    [23] KEY N L,ARTS T. Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions[J]. Journal of Turbomachinery,2006,128(2): 213-220. doi: 10.1115/1.2162183
    [24] 邹正平. 航空燃气轮机涡轮气体动力学: 流动机理及气动设计[M]. 上海: 上海交通大学出版社, 2014.
    [25] 刘昊. 考虑缘板间隙下非轴对称端壁的实验和数值研究[D]. 上海: 上海交通大学, 2018.
  • 加载中
图(13)
计量
  • 文章访问数:  175
  • HTML浏览量:  108
  • PDF量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 网络出版日期:  2022-09-09

目录

    /

    返回文章
    返回