Ground test and numerical simulation on high temperature non-equilibrium flow
-
摘要:
基于高温非平衡流动数值计算和试验验证不足的现状,发展了高温流场地面试验模拟技术与流场显示技术。分别在FD-21高焓激波风洞和FD-20常规激波风洞中,开展了高温非平衡流动地面试验,获得了半圆球空间流场结构和气动加热结果。同时,针对典型高超声速飞行环境,建立了高空高超声速热化学非平衡流动数值模拟技术,并利用地面试验对计算方法的可靠性进行了验证,试验模型半径20 mm和60 mm的半圆球。计算结果表明:①风洞来流参数经过数值计算对比验证,其测得的来流压力和组分可以作为后续数值模拟方法的输入条件。②对典型半圆球模型进行了流场数值模拟,并对比分析了半圆球热流试验结果与计算结果。表明双温模型(热化学非平衡模型-2T)计算与试验吻合良好;非催化壁面条件下,总温为2700 K时,2T模型热流计算结果与试验结果的相对误差为11.6%;总温为4050 K时,2T模型热流计算结果与试验结果的相对误差为17.5%。③计算结果获得的试验纹影(圆球脱体激波距离)与吻合良好;非催化壁面条件下,2T模型激波脱体距离与纹影的相对误差为−1.9%~0.86%。
Abstract:Because of the insufficiency of numerical simulation and test verification of high temperature non-equilibrium flow status, the high temperature flow field ground test simulation technology and display technology in high enthalpy shock wave wind tunnel were developed respectively. The ground tests of high temperature non-equilibrium flows were carried out in FD-21 high enthalpy shock wave wind tunnel and FD-20 normal shock wave wind tunnel, then the spatial flow field structure and the aerodynamic heating results of the test hemisphere were obtained. Meanwhile, the numerical simulation technology of high altitude and hypersonic thermochemical non-equilibrium flow was established for the supersonic flight environment, and the reliability of the calculation method was verified by the ground test. The test models were of a hemisphere structure with radius of 20 mm and 60 mm. The calculation results showed that: (1) The inlet flow parameters in the wind tunnel were verified by numerical simulation and the pressure and species can be taken as input parameters for the below numerical simulation. (2) Numerical simulations were carried out on the above typical hemispheres, and the test and calculation results of the hemisphere heat flux were compared and analyzed. The results showed that the two-temperature model (thermal chemical non-equilibrium model-2T) was in good agreement with the test. Under the condition of non-catalytic wall, the relative error between the calculated heat flux result of 2T model and the test result was 11.6% when the total temperature was 2700 K. The relative error was 17.5% when the total temperature was 4050 K. (3) The test schlieren (hemisphere shock wave off distance) obtained from the calculated results was in good agreement with each other. Under the condition of non-catalytic wall, the relative error between the shock wave off distance and schlieren of 2T model was −1.9%−0.86%.
-
表 1 试验喷管出口流场参数和气体组元质量分数
Table 1. Flow field parameters and gas species mass fraction at the test nozzle exit
工况 总压/
MPa总温/
K静压/
Pa平动-转动
温度/K振动电子
温度/K来流速度/
(m/s)来流
马赫数质量分数/% 热流
试验纹影
试验N2 O2 NO O 1 9.2 2700 240 161 1320 2417 9.78 75.12 21.84 3.04 3.4×10−3 √ 2 20.3 4050 578 301 1534 3160 9.29 74.17 20.71 5.06 5.2×10−3 √ √ 表 2 半圆球驻点热流计算结果与试验结果对比
Table 2. Heat flux of the hemisphere comparison between the computation and test results at stagnation point
工况 试验 Perfect 1T-NC 1T-FC 2T-NC 2T-FC 1 热流数值结果/(MW/m2) 1.25 1.47 1.452 1.453 1.395 1.395 (CFD/试验−1)×100% 17.6 16.16 16.24 11.6 11.60 2 热流数值结果/(MW/m2) 2.97 4.52 4.14 4.22 3.49 3.59 (CFD/试验−1)×100% 52.2 39.4 42.1 17.5 20.9 表 3 半圆球脱体激波距离计算结果与试验结果对比 (R=60 mm)
Table 3. Comparison of the shock off distance of the hemisphere between the computation results and schlieren test (R=60 mm)
方法 试验 Perfect 1T 2T $\varDelta_x $/mm 7.02~7.215 8.59 6.48 7.08 相对误差/% 0 19.1~22.3 −10.2~−7.7 −1.9~0.86 -
[1] 欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京: 国防工业出版社, 2001. [2] 柳军,刘伟,曾明,等. 高超声速三维热化学非平衡流场的数值模拟[J]. 力学学报,2003,35(6): 730-734. doi: 10.3321/j.issn:0459-1879.2003.06.011LIU Jun,LIU Wei,ZENG Ming,et al. Numerical simulation of 3D hypersonic thermochemical nonequilibrium flow[J]. Acta Mechanica Sinica,2003,35(6): 730-734. (in Chinese) doi: 10.3321/j.issn:0459-1879.2003.06.011 [3] OLYNICK D, CHEN Y K, TAUBER M, et al. Wake flow calculations with ablation for the Stardust Sample Return Capsule[R]. AIAA1997-2477, 1997. [4] MCNEIL C F, PETER A. User’s manual for the langley aerothermodynamic upwind relaxation algorithm (LAURA) [R]. NASA-TM-4674, 1996 [5] SRINIVASAN S, BITTNER R, BOBSKILL G J. Summary of the GASP code application and evaluation effort for scramjet combustor flowfields[R]. AIAA-93-1973, 1993 [6] 欧阳水吾,谢中强. 非平衡化学反应流场NS方程计算研究[J]. 计算物理,1997,14(1): 6-12. doi: 10.19596/j.cnki.1001-246x.1997.01.002OUYANG Shuiwu,XIE Zhongqiang. Navier stokes computation of nonequilibrium chemically reacting flowfields[J]. Chinese Journal of Computation Physics,1997,14(1): 6-12. (in Chinese) doi: 10.19596/j.cnki.1001-246x.1997.01.002 [7] 黄华,瞿章华. 11组元轴对称热化学非平衡流场的数值研究[J]. 空气动力学学报,1999,17(4): 462-465. doi: 10.3969/j.issn.0258-1825.1999.04.015HUANG Hua,QU Zhanghua. Numerical study for symmetric thermochemical nonequilibriumflowfield with eleven species air model[J]. Acta Aerodynamica Sinica,1999,17(4): 462-465. (in Chinese) doi: 10.3969/j.issn.0258-1825.1999.04.015 [8] 董维中,高铁锁,丁明松. 高超声速非平衡流场多个振动温度模型的数值研究[J]. 空气动力学学报,2007,25(1): 1-6. doi: 10.3969/j.issn.0258-1825.2007.01.001DONG Weizhong,GAO Tiesuo,DING Mingsong. Numerical studies of the multiple vibrational temperature model in hypersonic non-equilibrium flows[J]. Acta Aerodynamica Sinica,2007,25(1): 1-6. (in Chinese) doi: 10.3969/j.issn.0258-1825.2007.01.001 [9] GRANTHAM W. Flight results of a 25 000-foot-per-second reentry experiment using microwave reflectometers to measure plasma electron density and standoff distance[R]. NASA TND-6062, 1970 [10] 周禹. 高超声速热化学非平衡流场数值模拟研究[D]. 北京: 北京航空航天大学, 2009.ZHOU Yu. Numerical simulation of hypersonic thermal and chemical non-equilibrium flowfields[D]. Beijing: Beihang University, 2009. (in Chinese) [11] GNOFFO P, GUPTA R, SHINN J. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. NASA TP-2867, 1989 [12] 周靖云. 高超声速热化学非平衡等离子体流场数值模拟[D]. 北京: 中国航天空气动力技术研究院, 2020.ZHOU Jingyun. Numerical simulation of thermochemical non-equilibrium hypersonic plasma flow[D]. Beijing: China Academy of Aerospace Aerodynamics, 2020. (in Chinese) [13] FURUMOTO G H,ZHONG Xiaolin,SKIBA J C. Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction[J]. Physics of Fluids,1997,9(1): 191-210. doi: 10.1063/1.869162 [14] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996.DONG Weizhong. Numerical calculation and analysis of the influence of thermochemical non-equilibrium effect on hypersonic flow[D]. Beijing: Beihang University, 1996. (in Chinese) [15] GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K[R]. NASA-TM-101528, 1989 [16] 汪球,赵伟,滕宏辉,等. 高焓激波风洞喷管流场非平衡特性研究[J]. 空气动力学学报,2015,33(1): 66-71.WANG Qiu,ZHAO Wei,TENG Honghui,et al. Numerical simulation of non-equilibrium characteristics of high enthalpy shock tunnel nozzle flow[J]. Acta Aerodynamica Sinica,2015,33(1): 66-71. (in Chinese) [17] PARK C. Assessment of two-temperature kinetic model for ionizing air[R]. AIAA 1987-1574, 1987. [18] 苗文博,罗晓光,程晓丽,等. 壁面催化对高超声速飞行器气动特性影响[J]. 空气动力学学报,2014,32(2): 235-239. doi: 10.7638/kqdlxxb-2012.0096MIAO Wenbo,LUO Xiaoguang,CHENG Xiaoli,et al. Surface recombination effects on aerodynamic loads of hypersonic vehicles[J]. Acta Aerodynamica Sinica,2014,32(2): 235-239. (in Chinese) doi: 10.7638/kqdlxxb-2012.0096 [19] LIOU M S. A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds[R]. AIAA 2003-4116, 2003. [20] SAPPEY A, SUTHERLAND L, OWENBY D, et al. Flight-ready TDLAS combustion sensor for the HIFiRE 2 hypersonic research program[R]. Arnold Engineering Development Center AEDC-TR-10-T-6, 2009 [21] 王保国,李翔. 多工况下高超声速飞行器再入时流场的计算[J]. 西安交通大学学报,2010,44(1): 71-76.WANG Baoguo,LI Xiang. Prediction of hypersonic vehicle reentry flowfields in multiple cases[J]. Journal of Xi’an Jiaotong University,2010,44(1): 71-76. (in Chinese) -