留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离心喷嘴初始雾化性能PDPA及DOH对比试验

王东辉 黄勇 汪磊 吴迎春

王东辉, 黄勇, 汪磊, 等. 离心喷嘴初始雾化性能PDPA及DOH对比试验[J]. 航空动力学报, 2022, 37(11):2513-2523 doi: 10.13224/j.cnki.jasp.20220247
引用本文: 王东辉, 黄勇, 汪磊, 等. 离心喷嘴初始雾化性能PDPA及DOH对比试验[J]. 航空动力学报, 2022, 37(11):2513-2523 doi: 10.13224/j.cnki.jasp.20220247
WANG Donghui, HUANG Yong, WANG Lei, et al. Comparative experiment on initial atomization performance of centrifugal nozzle with PDPA and DOH[J]. Journal of Aerospace Power, 2022, 37(11):2513-2523 doi: 10.13224/j.cnki.jasp.20220247
Citation: WANG Donghui, HUANG Yong, WANG Lei, et al. Comparative experiment on initial atomization performance of centrifugal nozzle with PDPA and DOH[J]. Journal of Aerospace Power, 2022, 37(11):2513-2523 doi: 10.13224/j.cnki.jasp.20220247

离心喷嘴初始雾化性能PDPA及DOH对比试验

doi: 10.13224/j.cnki.jasp.20220247
详细信息
    作者简介:

    王东辉(1995-),男,博士生,主要从事航空发动机喷嘴雾化性能研究

    通讯作者:

    黄勇(1964-),男,教授、博士生导师,博士,主要从事燃油雾化及燃烧室点火熄火机理研究。E-mail:yhuang@buaa.edu.cn

  • 中图分类号: V231.23

Comparative experiment on initial atomization performance of centrifugal nozzle with PDPA and DOH

  • 摘要:

    为了开展离心喷嘴初始雾化阶段雾化性能研究,结合传统的相位多普勒颗粒分析仪(PDPA)和新兴的数字离轴全息术(DOH)两种测试方法对离心喷嘴雾化性能进行了测试。测试过程中,以航空煤油RP-3为工质,保持燃油压力为0.8 MPa不变,改变燃油温度(240~300 K)。测试结果表明:初始雾化阶段SMD空间分布呈“单峰”分布,且随着轴向距离的增大,SMD的峰值变大,峰值位置向外侧移动;对于初始雾化阶段的同一轴向位置,油温的改变会同时影响液膜破碎长度和液滴破碎过程,使燃油温度对SMD分布无明显的规律性;DOH液滴识别算法会将重叠的液滴识别为液丝或不规则液滴排除在统计范围内,使DOH测得的SMD和液滴尺寸微分分布峰值位置较PDPA偏小;DOH可以直接观察到液膜破碎过程和破碎后的液滴分布情况,有助于对试验结果进行分析。

     

  • 图 1  试验用离心喷嘴结构和破碎过程示意图

    Figure 1.  Schematic diagram of the centrifugal nozzle structure and breakup process for the experiments

    图 2  燃油供给与回收系统示意图

    Figure 2.  Schematic diagram of the fuel supply and recovery system

    图 3  二维PDPA测试系统示意图

    Figure 3.  Schematic diagram of 2D PDPA measurement system

    图 4  脉冲激光离轴全息测试系统示意图[22]

    Figure 4.  Schematic diagram of pulsed laser DOH measurement system[22]

    图 5  DOH方法中液滴记录、识别和重建过程

    Figure 5.  Droplet recording, identification and reconstruction process in DOH method

    图 6  离散液滴聚焦曲线

    Figure 6.  Focusing curves of discrete droplets

    图 7  DOH标定板不同尺寸粒径测量相对误差

    Figure 7.  Relative error between the measurement of DOH and stand particle of calibration plate with different sizes

    图 8  典型喷雾场内液滴识别情况

    Figure 8.  Droplet identification in the typical spray field

    图 9  SMD空间分布云图和分布曲线计算方法

    Figure 9.  SMD spatial distribution cloud atlas and distribution curves calculation method

    图 10  喷嘴下游5~8 mm处的SMD分布云图 (T=280 K)

    Figure 10.  Cloud of SMD distribution at 5~8 mm downstream of the nozzle (T=280 K)

    图 11  喷嘴下游SMD空间分布曲线

    Figure 11.  SMD spatial distribution curve at downstreamof the nozzle

    图 12  燃油温度为280 K时得到的时间分辨雾化结果

    Figure 12.  Time-resolved atomization results obtained at fuel temperature of 280 K

    图 13  不同燃油温度下,喷嘴下游7 mm处SMD空间分布曲线

    Figure 13.  Spatial distribution curves of SMD at 7 mm downstream of the nozzle under different fuel temperatures

    图 14  不同燃油温度下喷嘴下游7 mm处液滴尺寸数量微分分布试验结果和拟合结果对比

    Figure 14.  Comparison of experimental and fitting results of DDSN at 7 mm downstream under different fuel temperatures

    图 15  典型非球形液滴形状及其等效直径

    Figure 15.  Shape and equivalent diameter of the typical non-spherical droplet

  • [1] 黄勇. 燃烧与燃烧室[M]. 北京: 北京航空航天大学出版社, 2009.
    [2] 甘晓华. 航空燃气轮机燃油喷嘴技术(精)[M]. 北京: 国防工业出版社, 2006.
    [3] LARYEA G N,NO S Y. Development of electrostatic pressure-swirl nozzle for agricultural applications[J]. Journal of Electrostatics,2003,57(2): 129-142. doi: 10.1016/S0304-3886(02)00122-5
    [4] 张弛,张荣伟,徐国强,等. 直射式双旋流空气雾化喷嘴的雾化效果[J]. 航空动力学报,2006,21(5): 805-809. doi: 10.3969/j.issn.1000-8055.2006.05.004

    ZHANG Chi,ZHANG Rongwei,XU Guoqing,et al. Experimental investigation on atomization of an air blast atomizer with plain orifice nozzle and dual swirl cup[J]. Journal of Aerospace Power,2006,21(5): 805-809. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.05.004
    [5] 蔡小舒. 颗粒粒度测量技术及应用[M]. 北京: 化学工业出版社, 2010.
    [6] BACHALO W. Spray diagnostics for the twenty-first century[J]. Atomization and Sprays,2000,10(3/4/5): 439-474.
    [7] ALBRECHT H E, DAMASCHKE N, BORYS M, et al. Laser Doppler and phase Doppler measurement techniques[M]. Berlin: Springer Science and Business Media, 2013.
    [8] 陈俊,吉洪湖,张宝诚. 双路离心喷嘴雾化特性的实验[J]. 航空动力学报,2010,25(4): 774-779. doi: 10.13224/j.cnki.jasp.2010.04.015

    CHEN Jun,JI Honghu,ZHANG Baocheng. Experimental investigation of spray characteristics of a double line pressure-swirl atomizer[J]. Journal of Aerospace Power,2010,25(4): 774-779. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.04.015
    [9] 周兵,吉洪湖,张宝诚. 旋流空气对双油路离心喷嘴雾化特性影响的实验[J]. 航空动力学报,2013,28(9): 1933-1941. doi: 10.13224/j.cnki.jasp.2013.09.029

    ZHOU Bing,JI Honghu,ZHANG Baocheng. Experiment of swirled air effect on spray characteristic of double-line pressure-swirl atomizer[J]. Journal of Aero-space Power,2013,28(9): 1933-1941. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.09.029
    [10] 邢小军,李继保. 模型燃烧室冷态喷雾场的实验研究[J]. 推进技术,2000,21(5): 61-65. doi: 10.3321/j.issn:1001-4055.2000.05.017

    XING Xiaojun,LI Jibao. Experimental study on spray field in combustor by phase doppler analyzer[J]. Journal of Propulsion Technology,2000,21(5): 61-65. (in Chinese) doi: 10.3321/j.issn:1001-4055.2000.05.017
    [11] BULZAN D L. Velocity and drop size measurements in a confined, swirl-stabilized, combusting spray[R]. AIAA-96-3164, 1996
    [12] MARCHIONE T,ALLOUIS C,AMORESANO A,et al. Experimental investigation of a pressure swirl atomizer spray[J]. Journal of Propulsion and Power,2007,23(5): 1096-1101. doi: 10.2514/1.28513
    [13] XIE J L,GAN Z W,DUAN F,et al. Characterization of spray atomization and heat transfer of pressure swirl nozzles[J]. International Journal of Thermal Sciences,2013,68: 94-102. doi: 10.1016/j.ijthermalsci.2012.12.015
    [14] SANTOLAYA J L,AISA L A,CALVO E,et al. Analysis by droplet size classes of the liquid flow structure in a pressure swirl hollow cone spray[J]. Chemical Engineering and Processing:Process Intensification,2010,49(1): 125-131. doi: 10.1016/j.cep.2009.12.003
    [15] LEE J,BASU S,KUMAR R. Comparison and cross-validation of optical techniques in different swirl spray regimes[J]. Atomization and Sprays,2013,23(8): 697-724. doi: 10.1615/AtomizSpr.2013008110
    [16] DAFSARI R A,CHANDRAHASAN R,AHN C,et al. Effect of internal geometry of the pressure-swirl duplex nozzle on the atomization characteristics of jet A-1 fuel[J]. Atomization and Sprays,2020,30(1): 55-73. doi: 10.1615/AtomizSpr.2020031921
    [17] DAFSARI R A,LEE H J,HAN J,et al. Evaluation of the atomization characteristics of aviation fuels with different viscosities using a pressure swirl atomizer[J]. International Journal of Heat and Mass Transfer,2019,145: 2-13.
    [18] 刘靖,胡二江,黄佐华,等. RP-3航空煤油与其模型燃料雾化特性的对比试验[J]. 航空动力学报,2022,37(4): 765-773. doi: 10.13224/j.cnki.jasp.20210168

    LIU Jing,HU Erjiang,HUANG Zuohua,et al. Comparative experiment of atomization characteristics of RP-3 kerosene and surrogate fuel[J]. Journal of Aerospace Power,2022,37(4): 765-773. (in Chinese) doi: 10.13224/j.cnki.jasp.20210168
    [19] WANG Junpeng,XU Cuicui,ZHOU Gang,et al. Spray structure and characteristics of a pressure-swirl dust suppression nozzle using a phase doppler particle analyze[J]. Processes,2020,8(9): 1-17.
    [20] 刘爱虢,王栋,于浩洋,等. 燃油温度对离心式喷嘴雾化性能影响[J]. 航空动力学报,2020,35(9): 1793-1800. doi: 10.13224/j.cnki.jasp.2020.09.001

    LIU Aiguo,WANG Dong,YU Haoyang,et al. Effect of fuel temperature on atomization characteristics of cen-trifugal nozzle[J]. Journal of Aerospace Power,2020,35(9): 1793-1800. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.09.001
    [21] DAFSARI R A,LEE H J,HAN J,et al. Viscosity effect on the pressure swirl atomization of an alternative aviation fuel[J]. Fuel,2019,240: 1-9. doi: 10.1016/j.fuel.2018.11.138
    [22] WU Yingchun,WANG Lei,LIN Wenhui,et al. Picosecond pulsed digital off-axis holography for near-nozzle droplet size and 3D distribution measurement of a swirl kerosene spray[J]. Fuel,2021,283: 119-124.
    [23] WANG Lei,LI Tianxiong,ZHAO Yue,et al. 65 kHz picosecond digital off-axis holographic imaging of 3D droplet trajectory in a kerosene swirl spray flame[J]. Optics and Lasers in Engineering,2022,160: 1-9.
    [24] 宋阁,赵越,汪磊,等. 离轴全息成像测量三维气动旋流低温雾化场[J]. 实验流体力学,2022,36(2): 21-29. doi: 10.11729/syltlx20210158

    SONG Ge,ZHAO Yue,WANG Lei,et al. Measurement of 3D airblast swirl atomization field at low temperature with off-axis holography[J]. Journal of Experiments in Fluid mechanics,2022,36(2): 21-29. (in Chinese) doi: 10.11729/syltlx20210158
    [25] NISHIDA K,LI T. Characterization of initial spray from a D. I. gasoline injector by holography and laser diffraction method[J]. Atomization and Sprays,2004,14(5): 1-18.
    [26] NISHIDA K,MURAKAMI N,HIROYASU H. Holographic measurement of evaporating diesel sprays at high pressure and temperature: heat transfer, combustion, power, thermophysical properties[J]. JSME (the Japan Society of Mechanical Engineers) International Journal,1987,30(259): 107-115. doi: 10.1299/jsme1987.30.107
    [27] CHAREYRON D,MARIÉ J L,FOURNIER C,et al. Testing an in-line digital holography 'inverse method' for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence[J]. New Journal of Physics,2012,14(4): 1-26.
    [28] JAMES T,BEN B,TOMOV I,et al. Probing dense sprays with gated, picosecond, digital particle field holography[J]. International Journal of Spray and Combustion Dynamics,2011,3(4): 351-366. doi: 10.1260/1756-8277.3.4.351
    [29] ALI Z,COLIN D,MARCO M,et al. Ultra-short pulsed off-axis digital holography for imaging dynamic targets in highly scattering conditions[J]. Applied Optics,2017,56(13): 1-8.
    [30] WU Yingchun,WU Xuecheng,YANG Jing,et al. Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography[J]. Applied Optics,2014,53(4): 556-564. doi: 10.1364/AO.53.000556
    [31] KAHEN K,ACON B W,MONTASER A. Modified Nukiyama–Tanasawa and Rizk–Lefebvre models to predict droplet size for microconcentric nebulizers with aqueous and organic solvents[J]. Journal of Analytical Atomic Spectrometry,2005,20(7): 631-637. doi: 10.1039/b501186h
    [32] LAN Zhike,ZHU Dahuan,TIAN Wenxi,et al. Experimental study on spray characteristics of pressure-swirl nozzles in pressurizer[J]. Annals of Nuclear Energy,2014,63: 215-227. doi: 10.1016/j.anucene.2013.07.048
  • 加载中
图(16)
计量
  • 文章访问数:  183
  • HTML浏览量:  60
  • PDF量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回