留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑复杂涵道影响的变循环发动机压缩系统一体化性能评估方法

王若玉 于贤君 梁彩云 孟德君 安广丰 刘宝杰

王若玉, 于贤君, 梁彩云, 等. 考虑复杂涵道影响的变循环发动机压缩系统一体化性能评估方法[J]. 航空动力学报, 2022, 37(10):2090-2103 doi: 10.13224/j.cnki.jasp.20220248
引用本文: 王若玉, 于贤君, 梁彩云, 等. 考虑复杂涵道影响的变循环发动机压缩系统一体化性能评估方法[J]. 航空动力学报, 2022, 37(10):2090-2103 doi: 10.13224/j.cnki.jasp.20220248
WANG Ruoyu, YU Xianjun, LIANG Caiyun, et al. Integrated performance evaluation method for variable cycle engine compression system considering influence of complex bypass [J]. Journal of Aerospace Power, 2022, 37(10):2090-2103 doi: 10.13224/j.cnki.jasp.20220248
Citation: WANG Ruoyu, YU Xianjun, LIANG Caiyun, et al. Integrated performance evaluation method for variable cycle engine compression system considering influence of complex bypass [J]. Journal of Aerospace Power, 2022, 37(10):2090-2103 doi: 10.13224/j.cnki.jasp.20220248

考虑复杂涵道影响的变循环发动机压缩系统一体化性能评估方法

doi: 10.13224/j.cnki.jasp.20220248
基金项目: 国家科技重大专项(J2019-Ⅱ-0020-0041)
详细信息
    作者简介:

    王若玉(1993-),女,博士,主要从事叶轮机械气动热力学研究

    通讯作者:

    于贤君(1980-),男,副研究员、博士生导师,博士,主要从事叶轮机械气动热力学研究。E-mail:yuxianjun@buaa.edu.cn

  • 中图分类号: V231.3

Integrated performance evaluation method for variable cycle engine compression system considering influence of complex bypass

  • 摘要:

    基于双外涵变循环发动机压缩系统,分析了多连通气动布局变循环压缩系统的匹配工作机制。一体化全三维数值模拟表明:变循环压缩系统各压缩部件与涵道及其调节机构之间由于多连通特征相对于常规发动机压缩系统具有更强的耦合工作特点,高效的外涵道流动是发挥变循环发动机性能优势的关键。涵道几何的调节不仅会改变其自身流动状态,还伴随着压缩部件气动性能的偏移,模式转换过程必须符合各涵道及调节机构之间的气动协调匹配。提出了适用于多连通变循环压缩系统的一体化变维度分析方法,将部件通流程序与涵道零维程序相结合,实现了部件-涵道耦合匹配关系的快速分析。基于变维度分析方法给出了单外涵模式部件与涵道共同约束下的压缩系统综合匹配可行域,旨在为变循环发动机的匹配设计提供理论依据。

     

  • 图 1  变循环发动机压缩系统的几何模型与网格

    Figure 1.  Geometric model and mesh of variable cycle engine compression system

    图 2  压缩系统改型前后的涵道流路

    Figure 2.  Comparison of bypass flow path of compression system before and after modification

    图 3  单外涵模式下外涵道汇流区总压沿流向的分布

    Figure 3.  Distribution of total pressure along the downstream of the combining surface of bypass for the single bypass mode

    图 4  单外涵模式下压缩系统外涵效率随总涵道比的变化

    Figure 4.  Variation of outer bypass efficiency of compression system with total bypass ratio under the single bypass mode

    图 5  双外涵模式第二外涵道总压沿流向的分布

    Figure 5.  Distribution of total pressure along the downstream of second bypass for the double bypass mode

    图 6  双外涵模式外涵道汇流区总压沿流向的分布

    Figure 6.  Distribution of total pressure in the downstream of the combining surface of bypass for the double bypass mode

    图 7  不同涵道流路方案压缩系统的涵道比随外涵道背压的变化规律

    Figure 7.  Variation of bypass ratio of compression system with bypass backpressure for different flow path schemes

    图 8  第二外涵道进口分流环局部的马赫数分布

    Figure 8.  Distribution of Mach number near the splitter ring of the second bypass inlet

    图 9  压缩系统的涵道比随MSV开度的变化规律

    Figure 9.  Variation of bypass ratio with the opening condition of the MSV of compression system

    图 10  MSV调节过程中部件工作点的变化

    Figure 10.  Movement component matching point with the regulation of the MSV

    图 11  FVABI调节过程中压缩系统涵道比的变化

    Figure 11.  Variation of bypass ratio with the opening condition of the FVABI of compression system

    图 12  FVABI调节过程中各部件工作点的变化规律

    Figure 12.  Movement component matching point with the regulation of the FVABI

    图 13  多涵道压缩系统的通流计算模型

    Figure 13.  Throughflow calculation model of the multi-channel compression system

    图 14  NASA Stage 37的通流计算网格

    Figure 14.  Throughflow calculation mesh for NASA Stage 37

    图 15  NASA Stage 37在无量纲转速为0.7~1.0下的特性

    Figure 15.  Performance map for NASA Stage 37 at 0.7—1.0 dimensionless rotational speed

    图 16  5级压气机的通流计算网格

    Figure 16.  Throughflow calculation mesh for the five-stage compressor

    图 17  某5级压气机的特性

    Figure 17.  Performance map for the five-stage compressor

    图 18  压缩系统的部件匹配可行域(nfan,cor=1.0、 Ms,fan=10%、nCDFS,cor=0.9、αVIGV=0°)

    Figure 18.  Component operation zone of the compression system (nfan,cor=1.0,Ms,fan =10%,nCDFS,cor=0.9,αVIGV=0°)

    图 19  不同风扇裕度方案压缩系统的部件匹配可行域

    Figure 19.  Component operation zone of the compression system with different fan stall margins

    图 20  不同CDFS转速下压缩系统的部件匹配可行域

    Figure 20.  Component operation zone of the compression system with different CDFS rotating speeds

    图 21  变循环压缩系统的变维度分析模型

    Figure 21.  Variable-dimensional analysis method for variable cycle compression system

    图 22  单外涵模式不同FVABI开度方案的最大涵道比

    Figure 22.  The maximum bypass ratio for different FVABI opening schemes for the single bypass mode

    图 23  单外涵模式下压缩系统的综合匹配可行域

    Figure 23.  Comprehensive operation zone of the compression system for the single bypass mode

    图 24  匹配可行域内倒流裕度的分布

    Figure 24.  Distribution of recirculation margin in the operation zone

    表  1  涵道流路的影响计算方案 (单外涵)

    Table  1.   Calculation scheme to investigate the influence of bypass flow path (single bypass)

    参数数值
    低压轴相对物理转速nlow1.0
    高压轴相对物理转速nhigh1.0
    CDFS进口导叶开度αVIGV/(°)0
    AFVABI0.43
    内涵相对出口背压pinner1.0
    外涵道相对出口背压pouter0.78~1.33
    下载: 导出CSV

    表  2  涵道流路的影响计算方案 (双外涵)

    Table  2.   Calculation scheme to investigate the influence of bypass flow path (double bypass)

    参数数值
    低压轴相对物理转速nlow1.0
    高压轴相对物理转速nhigh0.96
    CDFS进口导叶开度αVIGV/(°)40
    AFVABI0.43
    内涵相对出口背压pinner1.0
    外涵道相对出口背压pouter0.83~1.23
    下载: 导出CSV

    表  3  压缩系统模式转换过程计算方案设置

    Table  3.   Calculation scheme setting to investigate the mode transition process of compression system

    方案AMSVAFVABIpinnerpouternlownhigh
    工况 100.431.01.01.01.0
    工况20.09
    工况30.17
    工况40.26
    工况50.35
    工况60.43
    下载: 导出CSV

    表  4  FVABI开度调节方案参数设置

    Table  4.   Parameter setting of calculation scheme to investigate the opening condition of the FVABI

    方案AMSVAFVABIpouterpinnernlownhigh
    工况10.350.431.01.01.01.0
    工况20.38
    工况30.33
    工况40.28
    下载: 导出CSV
  • [1] JOHNSON J E. Variable cycle engine developments at General Electric-1955-1995[C]//Developments in high-speed vehicle propulsion systems.Reston,US:AIAA,1996:105-158.
    [2] General Electric. GE successfully concludes phase 1 testing on second XA100 adaptive cycle engine[EB/OL]. [2021-12-15].https://www.ge.com/news/press-releases/ge-successfully-concludes-phase-1-testing-on-second-xa100-adaptive-cycle-engine.
    [3] BERTON J J, HALLER W J, SENICK P F, et al. A comparative propulsion system analysis for the high-speed civil transport[R].NASA/TM-2005-213414,2005.
    [4] GIFFIN, R G, JOHNSON J E. Gas turbine engine with outer fans: EP2333238A2[P].2011-06-15.
    [5] SIMMONS R J. Design and control of a variable geometry turbofan with and independently modulated third stream[D].Columbus,US: The Ohio State University,2009.
    [6] 史文斌,王咏梅,昌皓. 自适应发动机及压缩系统构型简析[J]. 航空动力,2020(2): 57-60.

    SHI Wenbin,WANG Yongmei,CHANG Hao. Analysis of adaptive cycle engine and compression system configuration[J]. Aerospace Power,2020(2): 57-60. (in Chinese)
    [7] GIFFIN R G, JOHNSON J E. FLADE gas turbine engine with counter-rotatable fans: US7246484B2[P]. 2007-07-24.
    [8] FRENCH M, ALLEN C. NASA VCE test bed engine aerodynamic performance characteristics and test results[R].Spings,Colorado,US: the 17th Joint Propulsion Conference,1981.
    [9] CONRAD D W, GUY K F. Individual bypass injector valves for a double bypass variable cycle turbofan engine: US4175384[P].1979-11-27.
    [10] BACHELDER K A, WELTY D J. Methods and apparatus for supporting variable bypass valve systems: US6742324B2[P]. 2004-06-01.
    [11] 陈雷,潘若痴,杨琳,等. 变循环发动机模式转换对压缩部件的影响[J]. 航空发动机,2021,47(2): 22-27. doi: 10.13477/j.cnki.aeroengine.2021.02.004

    CHEN Lei,PAN Ruochi,YANG Lin,et al. Influence of variable cycle engine mode transition on compression components[J]. Aeroengine,2021,47(2): 22-27. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2021.02.004
    [12] XU Zhewen,LI Ming,TANG Hailong,et al. A multi-fidelity simulation method research on front variable area bypass injector of an adaptive cycle engine[J]. Chinese Journal of Aeronautics,2022,35(4): 202-219. doi: 10.1016/j.cja.2021.08.034
    [13] SONG Fu,ZHOU Li,WANG Zhanxue,et al. Integration of high-fidelity model of forward variable area bypass injector into zero-dimensional variable cycle engine model[J]. Chinese Journal of Aeronautics,2021,34(8): 1-15. doi: 10.1016/j.cja.2020.10.004
    [14] ZHANG Binglong, LIU He, ZHOU Jianhua, et al. Experimental research on the performance of the forward variable area bypass injector for variable cycle engines[EB/OL]. [2021-12-04]. https://www.degruyter.com/document/doi/10.1515/tjeng-2020-0021/html.
    [15] 刘佳鑫,王志强,严伟,等. 单/双涵道模式转换动态过程的数值研究[J]. 推进技术,2017,38(8): 1699-1708.

    LIU Jiaxin,WANG Zhiqiang,YAN Wei,et al. Numerical simulation of transition between single and double bypass mode[J]. Journal of Propulsion Technology,2017,38(8): 1699-1708. (in Chinese)
    [16] HANG Guoping,LI Chao,XIA Chen,et al. Investigations of entrainment characteristics and shear-layer vortices evolution in an axisymmetric rear variable area bypass injector[J]. Chinese Journal of Aeronautics,2022,35(4): 230-244. doi: 10.1016/j.cja.2021.10.025
    [17] WANG Ruoyu,LIU Baojie,YU Xianjun,et al. The exploration of bypass matching limitation and mechanisms in a double bypass engine compression system[J]. Aerospace Science and Technology,2021,119: 107225.1-107225.14.
    [18] DENNEY R K,TAI J C,KESTNER B K,et al. Variable cycle optimization for supersonic commercial applications[J]. SAE transactions,2005,114(1): 1354-1361.
    [19] TAI J, ROTH B, MAVRIS D. Development of an NPSS variable cycle engine model[R]. Indianapolis, US: International Society for Air Breathing Engines, 2005.
    [20] CHEN Haoying,ZHENG Qiangang,GAO Yuan,et al. Performance seeking control of minimum infrared characteristic on double bypass variable cycle engine[J]. Aerospace Science and Technology,2021,108: 106359.1-106359.12.
    [21] WANG Shaochang, WANG Jiqiang, JIANG Bo, et al. Research of variable cycle engine modeling technologies[R]. Xiamen, Fujian Chinese Intelligent Systems Conference, 2016.
    [22] JIA Linyuan,CHEN Yuchun,CHENG Ronghui,et al. Designing method of acceleration and deceleration control schedule for variable cycle engine[J]. Chinese Journal of Aeronautics,2021,34(5): 27-38. doi: 10.1016/j.cja.2020.08.037
    [23] 王若玉. 考虑涵道影响的双外涵变循环发动机压缩系统匹配机理研究[D]. 北京: 北京航空航天大学,2021.

    WANG Ruoyu. Investigations on the matching machenism of a double bypass engine compression system in consideration of the bypass configuration[D]. Beijing: Beihang University,2021. (in Chinese)
    [24] SUN Shijun, WANG Songtao, CHEN Shaowen, et al. The impact of various forward sweep angles on the performance of an ultra-high-load low-reaction transonic compressor rotor[J]. Applied Thermal Engineering, 2019, 150: 953-966.
    [25] ZHANG Longxin,WANG Songtao,ZHU Wei. Application of endwall contouring in a high-subsonic tandem cascade with endwall boundary layer suction[J]. Aerospace Science and Technology,2019,84: 245-256. doi: 10.1016/j.ast.2018.08.041
    [26] MATVEEV V, GORIACHKIN E, VOLKOV A. Increase of gas turbine plant efficiency by optimizing operation of compressors[C]// Institute of Physics (IOP) Conference Series: Materials Science and Engineering. Samara, Russian Federation: IOP Publishing, 2018: 012030.1-012030.7.
    [27] LIU Baojie,JIA Shaofeng,YU Xianjun. An integrated throughflow method for the performance analysis of variable cycle compression systems[J]. International Journal of Turbo and Jet-Engines,2021,38(3): 245-261.
    [28] REID L, MOORE R D. Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor[R]. NASA-TP-1337, 1978.
    [29] 刘宝杰,王若玉,梁彩云,等. 变循环压缩系统涵道流动计算模型及模式转换倒流判据研究[J]. 推进技术,2021,42(9): 1976-1984. doi: 10.13675/j.cnki.tjjs.190799

    LIU Baojie,WANG Ruoyu,LIANG Caiyun,et al. A CFD model for bypass flow in variable cycle engine compression systems and criterion to predict flow recirculation during mode transition[J]. Journal of Propulsion Technology,2021,42(9): 1976-1984. (in Chinese) doi: 10.13675/j.cnki.tjjs.190799
  • 加载中
图(24) / 表(4)
计量
  • 文章访问数:  174
  • HTML浏览量:  37
  • PDF量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回