留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LPP燃烧室燃烧不稳定特征三维模拟

李昊 刘勇 张祥 王旭怀 杨晨 刘重阳

李昊, 刘勇, 张祥, 等. LPP燃烧室燃烧不稳定特征三维模拟[J]. 航空动力学报, 2024, 39(3):20220250 doi: 10.13224/j.cnki.jasp.20220250
引用本文: 李昊, 刘勇, 张祥, 等. LPP燃烧室燃烧不稳定特征三维模拟[J]. 航空动力学报, 2024, 39(3):20220250 doi: 10.13224/j.cnki.jasp.20220250
LI Hao, LIU Yong, ZHANG Xiang, et al. Three-dimensional simulation of combustion instability characteristics in LPP combustor[J]. Journal of Aerospace Power, 2024, 39(3):20220250 doi: 10.13224/j.cnki.jasp.20220250
Citation: LI Hao, LIU Yong, ZHANG Xiang, et al. Three-dimensional simulation of combustion instability characteristics in LPP combustor[J]. Journal of Aerospace Power, 2024, 39(3):20220250 doi: 10.13224/j.cnki.jasp.20220250

LPP燃烧室燃烧不稳定特征三维模拟

doi: 10.13224/j.cnki.jasp.20220250
基金项目: 中国航发自主创新专项资金(ZZCX-2019-009)
详细信息
    作者简介:

    李昊(1998-),男,硕士生,主要研究方向为燃烧室不稳定燃烧。E-mail:leelihao@126.com

  • 中图分类号: V231.2

Three-dimensional simulation of combustion instability characteristics in LPP combustor

  • 摘要:

    为分析贫油预混预蒸发(LPP)燃烧室的燃烧不稳定(CI)特征,通过对三维亥姆霍兹方程进行了三种不同程度的简化:平均温度场和导入CFD温度场的无源项方程,以及导入燃烧流场特征的有源项方程,分别对单头部LPP燃烧室模型进行了三维频域特征数值仿真。结果表明:燃烧室内的温度分布是燃烧室声学特征频率的重要影响因素,释热率源项对主频无影响。相比于仅设置平均温度场,导入CFD三维温度场可以获得与实验频率更吻合的结果,精度提高了5%。采用解耦方式求解频域方程能够快速建立声学系统与燃烧流场间的联系,释热率和迟滞时间的空间分布特征表现在亥姆霍兹方程的源项,其对预测燃烧室固有频率没有影响,但是能够获得详细声压分布特征。

     

  • 图 1  燃烧室段横截面示意图

    Figure 1.  Schematic diagram of combustor cross-section

    图 2  实验系统示意图

    Figure 2.  Schematic diagram of experimental system

    图 3  实验测得CI频率

    Figure 3.  CI frequency measured from experiment

    图 4  燃烧室段网格划分

    Figure 4.  Meshing of combustor

    图 5  以阶跃函数设置模型温度

    Figure 5.  Setting model temperature by step function

    图 6  无源平均温度场模拟与实验结果对比

    Figure 6.  Comparison between simulation and experimental results of mean temperature field without source term

    图 7  PIV测量与RANS计算冷态流场轴向速度分布

    Figure 7.  Axial velocity distribution of cold flow field from PIV measurements and RANS calculation

    图 8  无量纲温度

    Figure 8.  Dimensionless temperature

    图 9  1阶纵向振型声压等值面

    Figure 9.  Sound pressure iso-surface of the first order longitudinal mode

    图 10  无源详细温度场模拟与实验结果对比

    Figure 10.  Comparison between simulation and experimental results of detailed temperature field without source term

    图 11  无量纲反应速率

    Figure 11.  Dimensionless rate of reaction

    图 12  无量纲迟滞时间

    Figure 12.  Dimensionless delay time

    图 13  不同频率声压级响应

    Figure 13.  Sound pressure level response at different frequencies

    图 14  速度脉动幅值与增益声压级响应

    Figure 14.  Sound pressure level response of velocity pulsation amplitude and gain

    表  1  实验工况及结果

    Table  1.   Experimental conditions and results

    工况进气温度/K出口温度/K油气比振荡频率/Hz
    13457600.036116
    234511200.041141
    334511400.045142
    43838200.036121
    538312000.040146
    638312300.044148
    74028500.034123
    840212400.039148
    940213800.045157
    下载: 导出CSV

    表  2  网格无关性验证结果

    Table  2.   Grid independence verification results

    网格数量/1041阶频率/Hz2阶频率/Hz3阶频率/Hz
    1196.804189.35278.01
    1696.803189.35278
    2196.801189.32277.95
    2696.801189.32277.95
    3096.801189.32277.95
    下载: 导出CSV

    表  3  无源平均温度场模拟与实验结果

    Table  3.   Simulation and experimental results of mean temperature field without source term

    工况编号特征频率/Hz误差/%
    实验模拟
    1116130.612.6
    2141147.554.6
    3142148.184.4
    4121136.7813.0
    5146153.735.3
    6148155.054.8
    7123139.4413.4
    8148156.435.7
    9157162.433.5
    下载: 导出CSV

    表  4  无源详细温度场模拟与实验结果

    Table  4.   Simulation and experimental results of detailed temperature field without source term

    工况编号特征频率/Hz误差/%
    实验模拟
    1116119.072.6
    2141143.191.60
    3142144.82.0
    4121126.674.7
    5146147.91.3
    6148149.791.2
    7123128.714.6
    8148150.011.4
    9157152.772.7
    下载: 导出CSV
  • [1] 李磊,孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术,2010,31(6): 710-720.

    LI Lei,SUN Xiaofeng. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology,2010,31(6): 710-720. (in Chinese)
    [2] 张弛,林宇震,徐华胜,等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报,2014,35(2): 332-350.

    ZHANG Chi,LIN Yuzhen,XU Huasheng,et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2): 332-350. (in Chinese)
    [3] 朱民,DOWLING A P,BRAY K N C. 振荡燃烧过程的计算和诊断[J]. 工程热物理学报,2007,28(1): 165-168.

    ZHU Min,DOWLING A P,BRAY K N C. Calculations and predications of combustion oscillations[J]. Journal of Engineering Thermophysics,2007,28(1): 165-168. (in Chinese)
    [4] 张志浩,刘潇,郑洪涛,等. 燃烧不稳定性实验诊断及数值分析方法研究进展[J]. 燃气轮机技术,2021,34(3): 1-13.

    ZHANG Zhihao,LIU Xiao,ZHENG Hongtao,et al. Research progress of experimental diagnosis and numerical analysis methods of combustion instability[J]. Gas Turbine Technology,2021,34(3): 1-13. (in Chinese)
    [5] 于丹,郭志辉,杨甫江. 贫燃预混燃烧室中的分布式火焰传递函数分析[J]. 推进技术,2016,37(12): 2210-2218.

    YU Dan,GUO Zhihui,YANG Fujiang. Experimentally study on distribution of flame transfer function in a lean premixed combustor[J]. Journal of Propulsion Technology,2016,37(12): 2210-2218. (in Chinese)
    [6] 唐豪杰,高原,朱民. 预混火焰传递函数的测量与分析[J]. 工程热物理学报,2011,32(1): 173-176.

    TANG Haojie,GAO Yuan,ZHU Min. Measurements and analysis of premixed flame transfer function[J]. Journal of Engineering Thermophysics,2011,32(1): 173-176. (in Chinese)
    [7] PASCHEREIT C, FLOHR P, SCHUERMANS B. Prediction of combustion oscillations in gas turbine combustors[R]. AIAA2001-484, 2001.
    [8] KOPITZ J, HUBER A, SATTELMAYER T, et al. Thermoacoustic stability analysis of an annular combustion chamber with acoustic low order modeling and validation against experiment[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Reno, US: ASME, 2008: 583-593.
    [9] 杨甫江,郭志辉,付虓. 基于热声网络法的燃烧不稳定性分析研究[J]. 推进技术,2014,35(6): 822-829.

    YANG Fujiang,GUO Zhihui,FU Xiao. Analytic study on combustion instability with a thermoacoustic network model[J]. Journal of Propulsion Technology,2014,35(6): 822-829. (in Chinese)
    [10] ZHANG Zhihao,LIU Xiao,GONG Yaozhen,et al. Investigation on flame characteristics of industrial gas turbine combustor with different mixing uniformities[J]. Fuel,2020,259: 116297.1-116297.13.
    [11] YANG Yang. Large eddy simulation calculated flame dynamics of one F class gas turbine combustor[J]. IOP Conference Series:Materials Science and Engineering,2019,643(1): 012141.1-012141.12.
    [12] KREDIET H J,BECK C H,KREBS W,et al. Saturation mechanism of the heat release response of a premixed swirl flame using LES[J]. Proceedings of the Combustion Institute,2013,34(1): 1223-1230. doi: 10.1016/j.proci.2012.06.140
    [13] CAMPA G, COSATTO E, CAMPOREALE S. Thermoacoustic analysis of combustion instability importing RANS data[R]. Milan, Italy: COMSOL Conference, 2012.
    [14] CAMPA G, CAMPOREALE S M, COSATTO E, et al. Thermoacoustic analysis of combustion instability through a distributed flame response function[C]//Proceedings of the ASME Turbo Expo. Copenhagen, Denmark: ASME, 2012: 179-188.
    [15] CAMPOREALE S M,FORTUNATO B,CAMPA G. A finite element method for three-dimensional analysis of thermo-acoustic combustion instability[J]. Journal of Engineering for Gas Turbines and Power,2011,133(1): 011506.1-011506.13.
    [16] CAMPA G, CAMPOREALE S M, GUAUS A, et al. A quantitative comparison between a low order model and a 3D FEM code for the study of thermoacoustic combustion instabilities[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Vancouver, British Columbia, Canada: ASME, 2012: 859-869.
    [17] SHAW V, CLABBERS J, GUTMARK E. Augmentor combustion instability with COMSOL multiphysics[R]. Lausanne, Switzerland: COMSOL Conference, 2018
    [18] 高贤智,何沛,冯晓星,等. 单扇区、扇形、全环燃烧室热声不稳定性试验和模拟研究[J]. 航空动力学报,2021,36(8): 1605-1613.

    GAO Xianzhi,HE Pei,FENG Xiaoxing,et al. Experimental and numerical investigation of thermo-acoustic instability in single-sector, sector and full annular combustors[J]. Journal of Aerospace Power,2021,36(8): 1605-1613. (in Chinese)
    [19] SILVA C F,NICOUD F,SCHULLER T,et al. Combining a Helmholtz solver with the flame describing function to assess combustion instability in a premixed swirled combustor[J]. Combustion and Flame,2013,160(9): 1743-1754. doi: 10.1016/j.combustflame.2013.03.020
    [20] NEZ R, FLESCA M G, MARCHAL D, et al. Experimental and numerical characterizations of acoustic damping rates in a coupled-cavity configuration[R]. Madrid, Spain: the 8th European Conference for Aeronautics and Aerospace Sciences, 2019.
    [21] TAMANAMPUDI G M R. Reduced order modeling and analysis of Combustion Instabilities[D]. West Lafayette, Indiana: Purdue University: 2015.
    [22] DOWLING A P. A kinematic model of a ducted flame[J]. Journal of Fluid Mechanics,1999,394: 51-72. doi: 10.1017/S0022112099005686
    [23] 杨旸,余志健. 基于火焰传递函数的旋流预混火焰稳定性分析[J]. 燃气轮机技术,2021,34(1): 14-20.

    YANG Yang,YU Zhijian. Stability analysis of a swirling premixed combustor based on flame transfer functions[J]. Gas Turbine Technology,2021,34(1): 14-20. (in Chinese)
    [24] LIU Yunpeng,LI Jinghua,HAN Qixiang,et al. Study of combustion oscillation mechanism and flame image processing[J]. AIAA Journal,2019,57(2): 824-835. doi: 10.2514/1.J057614
    [25] 吴江海, 吴健. 声固耦合有限元-无限元建模参数选取原则研究[R]. 昆明: 第18届船舶水下噪声学术讨论会论文集, 2021.
    [26] 杨宇东,刘爱虢,王鑫慈,等. 燃油喷雾对某小发环形回流燃烧室燃烧特性影响[J]. 航空动力学报,2023,38(4): 830-839.

    YANG Yudong,LIU Aiguo,WANG Xinci,et al. Effect of fuel spray on combustion characteristics of a small engine annular reverse flow combustor[J]. Journal of Aerospace Power,2023,38(4): 830-839. (in Chinese)
    [27] BAE J,JEONG S,YOON Y. Effect of delay time on the combustion instability in a single-element combustor[J]. Acta Astronautica,2021,178: 783-792. doi: 10.1016/j.actaastro.2020.10.004
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  115
  • HTML浏览量:  63
  • PDF量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2023-09-27

目录

    /

    返回文章
    返回