留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导叶端隙密封结构对可调涡轮性能的影响

王智慧 马朝臣 刘晓娟 赵芮

王智慧, 马朝臣, 刘晓娟, 等. 导叶端隙密封结构对可调涡轮性能的影响[J]. 航空动力学报, 2024, 39(3):20220251 doi: 10.13224/j.cnki.jasp.20220251
引用本文: 王智慧, 马朝臣, 刘晓娟, 等. 导叶端隙密封结构对可调涡轮性能的影响[J]. 航空动力学报, 2024, 39(3):20220251 doi: 10.13224/j.cnki.jasp.20220251
WANG Zhihui, MA Chaochen, LIU Xiaojuan, et al. Effect of end-clearance sealed structure of guide vane on variable nozzle turbine performance[J]. Journal of Aerospace Power, 2024, 39(3):20220251 doi: 10.13224/j.cnki.jasp.20220251
Citation: WANG Zhihui, MA Chaochen, LIU Xiaojuan, et al. Effect of end-clearance sealed structure of guide vane on variable nozzle turbine performance[J]. Journal of Aerospace Power, 2024, 39(3):20220251 doi: 10.13224/j.cnki.jasp.20220251

导叶端隙密封结构对可调涡轮性能的影响

doi: 10.13224/j.cnki.jasp.20220251
基金项目: 山西省高等学校科技创新项目(2021L499); 山西省青年科学研究项目(20210302123357)
详细信息
    作者简介:

    王智慧(1986-),女,讲师,博士,主要从事叶轮机械气动热力学研究。E-mail:wangzhihui001@126.com

  • 中图分类号: V231.3;TK474

Effect of end-clearance sealed structure of guide vane on variable nozzle turbine performance

  • 摘要:

    基于传统可调涡轮导叶,设计了一种带有端隙密封结构的喷嘴环导叶(end-clearance sealed guide vane, ESGV)。在导叶不同开度下,对ESGV可调涡轮进行数值模拟,分析了ESGV对可调涡轮性能的影响,结果表明:ESGV可以有效的抑制导叶端隙泄漏流,能够明显改善喷嘴环和转子通道的流动状态,进而提高涡轮效率。对ESGV可调涡轮和原始涡轮进行涡轮特性试验,结果显示:两型涡轮流量特性大致相同时,在导叶中开度下,ESGV涡轮效率较原始涡轮提高了5%,验证了ESGV方案的有效性。

     

  • 图 1  原始VNT及ESGV几何模型

    Figure 1.  Main configuration of the original VNT and ESGV

    图 2  原始涡轮及ESGV涡轮网格

    Figure 2.  Mesh of original and ESGV turbines

    图 3  原涡轮特性试验与数值计算结果对比

    Figure 3.  Comparison of the experimental and CFD performance of the original turbine

    图 4  ESGV涡轮与原始涡轮特性对比

    Figure 4.  Performance comparison of the original and ESGV turbines

    图 5  ESGV涡轮轮毂侧圆盘间隙静压分布

    Figure 5.  Static pressure distribution of disc clearance at the hub side of the ESGV turbine

    图 6  两型涡轮导叶相对泄漏量对比

    Figure 6.  Relative leakage flow comparison between original turbine and ESGV turbine

    图 7  小开度两型涡轮导叶不同叶高位置熵值分布

    Figure 7.  Entropy distribution of nozzle at different vane height for two turbines

    图 8  两型涡轮导叶出口总压损失系数

    Figure 8.  Total pressure loss coefficient at guide vane outlet for two turbines

    图 9  两型涡轮转子叶片进口相对气流角

    Figure 9.  Relative flow angle at rotor inlet for two turbines

    图 10  两型涡轮转子不同叶高处熵值分布

    Figure 10.  Entropy distribution at different rotor blade height for two turbines

    图 11  小开度下两型涡轮导叶间隙泄露流线

    Figure 11.  Streamline distribution of end-wall clearance leakage of guide vane at small opening for the two models

    图 12  涡轮特性试验原理图

    Figure 12.  Schematic arrangement of turbocharger test bench

    图 13  涡轮性能试验台

    Figure 13.  Turbine performance test bench

    图 14  两型涡轮特性曲线

    Figure 14.  Experimental characteristic map of the ESGV turbine compared to the original turbine

    表  1  原始导叶与ESGV主要参数

    Table  1.   Main parameters for the original guide vane and ESGV

    参数数值参数数值
    原始导叶叶片数量10ESGV叶高/mm6.77
    轮缘面端面间隙/mm0.15 圆盘直径/mm19.8
    轮毂面端面间隙/mm0.15圆盘厚度/mm2
    弦长/mm19圆盘凹槽直径/mm17.8
    导叶高度/mm6.47圆盘凹槽深度/mm0.5
    下载: 导出CSV

    表  2  网格信息

    Table  2.   Mesh quality information

    模型节点数延展比正交比长宽比
    转子6888482.8118.5462
    导叶4063862.0831.8242
    圆盘43681010.738.1825
    下载: 导出CSV
  • [1] DASGUPTA S,SARMAH P,BORTHAKUR P P. Application of variable geometry turbine turbochargers to gasoline engines-A review[J]. IOP Conference Series: Materials Science and Engineering,2020,943(1): 012010.1-012010.15.
    [2] FENELEY A J,PESIRIDIS A,ANDWARI A M. Variable geometry turbocharger technology for exhaust energy recovery and boosting-a review[J]. Renewable and Sustainable Energy Reviews,2017,71: 959-975. doi: 10.1016/j.rser.2016.12.125
    [3] MA Chaochen,HUANG Zhi,QI Mingxu. Investigation on the forced response of a radial turbine under aerodynamic excitations[J]. Journal of Thermal Science,2016,25(2): 130-137. doi: 10.1007/s11630-016-0843-1
    [4] CHITRAKAR S,NEOPANE H P,DAHLHAUG O G. The numerical and experimental investigation of erosion induced leakage flow through guide vanes of Francis turbine[J]. IOP Conference Series:Earth and Environmental Science,2019,240: 072002.1-072002.10.
    [5] 赵奔,马朝臣,胡良军,等. 导叶间隙不确定性对可调向心涡轮影响数值研究[J]. 推进技术,2014,35(4): 492-498. doi: 10.13675/j.cnki.tjjs.2014.03.003

    ZHAO Ben,MA Chaochen,HU Liangjun,et al. Numerical investigation on effects of uncertain nozzle vane clearance on variable geometry radial turbine performance[J]. Journal of Propulsion Technology,2014,35(4): 492-498. (in Chinese) doi: 10.13675/j.cnki.tjjs.2014.03.003
    [6] ZHAO Ben,WANG Leilei,HOU Hongjun. Numerical analysis for impacts of nozzle end-clearances on aerodynamic performance and forced response in a VNT turbine[J]. Chinese Journal of Aeronautics,2018,31(5): 1030-1040. doi: 10.1016/j.cja.2018.02.015
    [7] ZHONG Fangpan,ZHOU Chao. Effects of tip gap size on the aerodynamic performance of a cavity-winglet tip in a turbine cascade[J]. Journal of Turbomachinery,2017,139(10): 101009.1-101009.9.
    [8] FU Yunfeng,CHEN Fu,LIU Huaping,et al. Experimental and numerical study of honeycomb tip on suppressing tip leakage flow in turbine cascade[J]. Journal of Turbomachinery,2018,140(6): 061006.1-061006.10.
    [9] LI Jun,DU Kun,SONG Liming. Effects of tip cavity geometries on the aerothermal performance of the transonic turbine blade with cavity tip[J]. Proceedings of the Institution of Mechanical Engineers:Part A Journal of Power and Energy,2016,230(3): 319-331. doi: 10.1177/0957650915626833
    [10] MARAL H,ALPMAN E,KAVURMACıOĞLU L,et al. A genetic algorithm based aerothermal optimization of tip carving for an axial turbine blade[J]. International Journal of Heat and Mass Transfer,2019,143: 118419.1-118419.13.
    [11] GAO Jie,WEI Ming,LIU Pengfei,et al. Improved clearance designs to minimize aerodynamic losses in a variable geometry turbine vane cascade[J]. Proceedings of the Institution of Mechanical Engineers: Part C Journal of Mechanical Engineering Science,2018,232(17): 3085-3101. doi: 10.1177/0954406217729716
    [12] LIM B, PARK T, KANG Y S. Stall warning using the rotor tip pressure in a transonic axial compressor with circumferential grooves[R]. ASME Paper GT2018-76301, 2018.
    [13] ALONE D B, KUMAR S S, THIMMAIAH S, et al. Experimental investigation on the effect of porosity of bend skewed casing treatment on a single stage transonic axial flow compressor[R]. ASME Paper GT2014-26102, 2014
    [14] ZHANG Qianfeng,DU Juan,LI Jichao,et al. Dual stability enhancement mechanisms of axial-slot casing treatment in a high-speed mixed-flow compressor with various tip clearances[J]. Chinese Journal of Aeronautics,2021,34(4): 19-31. doi: 10.1016/j.cja.2020.08.019
    [15] YANG D, LAO D, YANG C, et al. Investigations on the generation and weakening of shock wave in a radial turbine with variable guide vanes[R]. ASME Paper GT2016-57047, 2016.
    [16] 侯红娟,王磊磊,李延昭. 可调向心涡轮导叶叶顶间隙及其调节方法的研究[J]. 海峡科技与产业,2017(4): 99-100. doi: 10.3969/j.issn.1006-3013.2017.04.036

    HOU Hongjuan,WANG Leilei,LI Yanzhao. Study on tip clearance of adjustable centripetal turbine guide vane and its adjustment method[J]. Technology and Industry Across the Straits,2017(4): 99-100. (in Chinese) doi: 10.3969/j.issn.1006-3013.2017.04.036
    [17] WANG Zhihui,MA Chaochen,HUANG Zhi,et al. A novel variable geometry turbine achieved by elastically restrained nozzle guide vanes[J]. Proceedings of the Institution of Mechanical Engineers: Part D Journal of Automobile Engineering,2020,234(9): 2312-2329. doi: 10.1177/0954407020909662
    [18] 黄文梅. 气动位置控制系统的状态反馈调节[J]. 湖南大学学报(自然科学版),1990,17(1): 11-18.

    HUANG Wenmei. State varable feedback control for pneumatical positioning systems[J]. Journal of Hunan University (Natural Science),1990,17(1): 11-18. (in Chinese)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  69
  • HTML浏览量:  72
  • PDF量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2023-09-22

目录

    /

    返回文章
    返回