留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续流区非线性本构模型及求解算法研究与实验验证

曾舒华 赵文文 江中正 陈伟芳

曾舒华, 赵文文, 江中正, 等. 连续流区非线性本构模型及求解算法研究与实验验证[J]. 航空动力学报, 2024, 39(3):20220256 doi: 10.13224/j.cnki.jasp.20220256
引用本文: 曾舒华, 赵文文, 江中正, 等. 连续流区非线性本构模型及求解算法研究与实验验证[J]. 航空动力学报, 2024, 39(3):20220256 doi: 10.13224/j.cnki.jasp.20220256
ZENG Shuhua, ZHAO Wenwen, JIANG Zhongzheng, et al. Numerical investigation and experimental validation of nonlinear constitutive models with solving algorithms in continuum flows[J]. Journal of Aerospace Power, 2024, 39(3):20220256 doi: 10.13224/j.cnki.jasp.20220256
Citation: ZENG Shuhua, ZHAO Wenwen, JIANG Zhongzheng, et al. Numerical investigation and experimental validation of nonlinear constitutive models with solving algorithms in continuum flows[J]. Journal of Aerospace Power, 2024, 39(3):20220256 doi: 10.13224/j.cnki.jasp.20220256

连续流区非线性本构模型及求解算法研究与实验验证

doi: 10.13224/j.cnki.jasp.20220256
基金项目: 国家自然科学基金(12002306,U20B2007); 国家数值风洞项目(NNW2019ZT3-A08)
详细信息
    作者简介:

    曾舒华(1998-),男,博士生,主要从事稀薄气体动力学方面的研究。E-mail:zeng12024052@zju.edu.cn

    通讯作者:

    赵文文(1987-),男,副研究员,博士,主要从事稀薄气体动力学方面的研究。E-mail:wwzhao@zju.edu.cn

  • 中图分类号: V211.3

Numerical investigation and experimental validation of nonlinear constitutive models with solving algorithms in continuum flows

  • 摘要:

    结合数值模拟和风洞试验技术,在高超声速连续流条件下对非线性耦合本构关系(NCCR)模型和由量纲分析推导得到的简化广义动力学(SGH)模型开展研究。基于小型高超声速风洞试验系统,在不同来流条件下对类HB2(hypervelocity ballistic model 2)标模和钝锥模型的气动力和物面压力进行了风洞试验测量。同时在三维有限体积框架下,分别采用分裂算法和耦合算法的NCCR模型、SGH模型对试验工况下的标模开展数值计算。结果表明:NCCR模型和SGH模型得到的气动力系数和物面压力均与Navier-Stokes(NS)方程解一致,并与风洞试验数据吻合较好;采用分裂算法的NCCR模型在类HB2头部膨胀拐角处预测的摩阻/热流系数明显低于NS方程解,而采用耦合算法的NCCR模型解与NS方程基本一致。计算结果和实验数据对比表明,NCCR模型和SGH模型在高超声速连续流中的准确性得到充分验证,此外,NCCR模型的分裂算法在三维高速流动中的适用性需进一步完善。

     

  • 图 1  类HB2标模(单位:mm)

    Figure 1.  Type HB2 standard model (unit: mm)

    图 2  钝锥外形几何尺寸(单位:mm)

    Figure 2.  Geometry of the blunt cone (unit: mm)

    图 3  类HB2气动力系数随攻角$\alpha $变化($M{a_\infty } = 5$

    Figure 3.  Aerodynamic coefficients of type HB2 model versus angle of attack ($M{a_\infty } = 5$

    图 4  类HB2标模实验纹影图($ M{a}_{\infty }=5$α =0°)

    Figure 4.  Experimental schlieren photographs of type HB2 model ($ M{a}_{\infty }=5 $, α=0°)

    图 5  温度云图和流线对比($ M{a}_{\infty }=5 $α=0°)

    Figure 5.  Comparisons of temperature contour and streamline ($ M{a}_{\infty }=5 $, α=0°)

    图 6  沿驻点线($X$方向)密度、局部克努森数($K{n_{{\rm{GLL}}}}$)、温度和马赫数分布($M{a}_{\infty }=5$α=0°)

    Figure 6.  Density, $ K{n_{{\rm{GLL}}}} $, temperature, and Mach number along the stagnation line ($ M{a}_{\infty }=5 $, α=0°, X direction)

    图 7  类HB2标模物面系数分布($ M{a}_{\infty }=5$α=0°)

    Figure 7.  Surface coefficients of type HB2 model ($ M{a}_{\infty }=5 $, α=0°)

    图 8  钝锥物面压力分布($M{a_\infty } = 5$

    Figure 8.  Surface pressure distribution f blunt cone ($M{a_\infty } = 5$

    图 9  沿驻点线($X$方向)密度、局部克努森数、温度和马赫数分布($ M{a}_{\infty }=7 $α=0°)

    Figure 9.  Density, $K{n_{{\rm{GLL}}}}$, temperature, and $Ma$ along the stagnation line ($ M{a}_{\infty }=7 $, α=0°, X direction)

    图 10  钝锥物面系数分布($ M{a}_{\infty }=7 $α=0°)

    Figure 10.  Surface coefficients of blunt cone ($ M{a}_{\infty }=7 $, α=0°)

    表  1  ϕ120 mm高超声速风洞性能参数

    Table  1.   Performance parameters of ϕ120 mm hypersonic wind tunnel

    风洞参数数值及详情
    来流马赫数范围5~7
    喷管出口直径/${\rm{mm}}$120
    来流最大总温/${\rm{K}}$500
    总压范围/${\rm{MPa}}$0.1~1.0
    工作时间t/${\rm{s}}$≥15
    下载: 导出CSV

    表  2  类HB2标模的试验条件

    Table  2.   Experimental conditions for type HB2 model

    参数工况编号
    12345
    马赫数55555
    攻角/(°)−4−2024
    总压/${\rm{kPa}}$451401494346401
    总温/${\rm{K}}$415417410402417
    静压/${\rm{Pa}}$852758934654758
    静温/${\rm{K}}$69.269.568.367.069.5
    壁温/${\rm{K}}$300300300300300
    速度/(${\rm{m/s}}$)834836829820836
    下载: 导出CSV

    表  3  钝锥的试验条件

    Table  3.   Experimental conditions for the blunt cone

    参数工况编号
    12345678910
    马赫数5555577777
    攻角/($^ \circ $)−10−50510−10−50510
    总压/${\rm{kPa}}$57364860370766614291403138814031410
    总温/${\rm{K}}$505504500474511505499480493494
    静压/${\rm{Pa}}$10821224114013351259345339335339341
    静温/${\rm{K}}$84.184.083.378.985.146.846.244.545.645.8
    壁温/${\rm{K}}$300300300300300300300300300300
    速度/(${\rm{m/s}}$)919919915891925960953936948950
    下载: 导出CSV
  • [1] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston, US: American Institute of Aeronautics and Astronautics, 2006
    [2] 吴其芬, 陈伟芳, 黄琳, 等. 稀薄气体动力学[M]. 长沙: 国防科技大学出版社, 2004.
    [3] 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.
    [4] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford, UK: Clarendon Press, 1994
    [5] BHATNAGAR P L,GROSS E P,KROOK M. A model for collision processes in gases. Ⅰ. small amplitude processes in charged and neutral one-component systems[J]. Physical Review,1954,94(3): 511-525. doi: 10.1103/PhysRev.94.511
    [6] XU Kun,HUANG Juanchen. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics,2010,229(20): 7747-7764. doi: 10.1016/j.jcp.2010.06.032
    [7] LI Zhihui,ZHANG Hanxin. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics,2004,193(2): 708-738. doi: 10.1016/j.jcp.2003.08.022
    [8] 刘沙,王勇,袁瑞峰,等. 统一气体动理学方法研究进展[J]. 气体物理,2019,4(4): 1-13. doi: 10.19527/j.cnki.2096-1642.0809

    LIU Sha,WANG Yong,YUAN Ruifeng,et al. Advance in unified methods based on gas-kinetic theory[J]. Physics of Gases,2019,4(4): 1-13. (in Chinese) doi: 10.19527/j.cnki.2096-1642.0809
    [9] 陈伟芳,赵文文,江中正,等. 稀薄气体动力学矩方法研究综述[J]. 气体物理,2016,1(5): 9-24. doi: 10.19527/j.cnki.2096-1642.2016.05.002

    CHEN Weifang,ZHAO Wenwen,JIANG Zhongzheng,et al. A review of moment equations for rarefied gas dynamics[J]. Physics of Gases,2016,1(5): 9-24. (in Chinese) doi: 10.19527/j.cnki.2096-1642.2016.05.002
    [10] 蔡振宁. 气体动理学中数值矩方法的算法研究与应用[D]. 北京: 北京大学, 2013.

    CAI Zhenning. Investigations and applications of the numerical moment method in the kinetic theory of gases[D]. Beijing: Peking University, 2013. (in Chinese)
    [11] CHAPMAN S, COWLING T. The mathematical theory of non-uniform gases[M]. 2nd ed. London: Cambridge University Press, 1953
    [12] BURNETT D. The distribution of molecular velocities and the mean motion in a non-uniform gas[J]. Proceedings of the London Mathematical Society,1936(1): 382-435.
    [13] GRAD H. On the kinetic theory of rarefied gases[J]. Communications on Pure and Applied Mathematics,1949,2(4): 331-407. doi: 10.1002/cpa.3160020403
    [14] TORRILHON M,STRUCHTRUP H. Regularized 13-moment equations: shock structure calculations and comparison to Burnett models[J]. Journal of Fluid Mechanics,2004,513: 171-198. doi: 10.1017/S0022112004009917
    [15] 赵文文. 高超声速流动Burnett方程稳定性与数值计算方法研究[D]. 杭州: 浙江大学, 2014.

    ZHAO Wenwen. Linearized stability analysis and numerical computation of Burnett equations in hypersonic flow[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
    [16] LOCKERBY D A,REESE J M,GALLIS M A. The usefulness of higher-order constitutive relations for describing the Knudsen layer[J]. Physics of Fluids,2005,17(10): 100609.1-100609.6.
    [17] EU B C. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics[M]. Cham, Germany: Springer International Publishing, 2016.
    [18] EU B C. Nonequilibrium statistical mechanics: ensemble method[M]. Dordrecht, the Netherlands: Kluwer Academic, 1998.
    [19] EU B C. A modified moment method and irreversible thermodynamics[J]. The Journal of Chemical Physics,1980,73(6): 2958-2969. doi: 10.1063/1.440469
    [20] MYONG R S. Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows[J]. Physics of Fluids,1999,11(9): 2788-2802. doi: 10.1063/1.870137
    [21] MYONG R S. A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows[J]. Journal of Computational Physics,2004,195(2): 655-676. doi: 10.1016/j.jcp.2003.10.015
    [22] 江中正. 稀薄气体流动非线性耦合本构关系模型理论与数值研究[D]. 杭州: 浙江大学, 2019.

    JIANG Zhongzheng. Theoretical and numerical investigations of nonlinear coupled constitutive relation model in rarefied gas flows[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [23] 何志强. NCCR稀薄气体动力学方程的非结构网格数值模拟研究[D]. 杭州: 浙江大学, 2021.

    HE Zhiqiang. Numerical investigations for NCCR based rarefied gas dynamics on unstructured grids[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
    [24] 袁震宇. 高超声速双原子气体非线性耦合本构关系及计算方法[D]. 杭州: 浙江大学, 2020.

    YUAN Zhenyu. Nonlinear coupled constitutive relations and simulation method for hypersonic diatomic gas[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
    [25] LIU Sha,YANG Yuehan,ZHONG Chengwen. An extended gas-kinetic scheme for shock structure calculations[J]. Journal of Computational Physics,2019,390: 1-24. doi: 10.1016/j.jcp.2019.04.016
    [26] JIANG Z,ZHAO W,CHEN W,et al. Computation of shock wave structure using a simpler set of generalized hydrodynamic equations based on nonlinear coupled constitutive relations[J]. Shock Waves,2019,29(8): 1227-1239. doi: 10.1007/s00193-018-0876-3
    [27] JIANG Zhongzheng,CHEN Weifang,ZHAO Wenwen. Numerical analysis of the micro-Couette flow using a non-Newton-Fourier model with enhanced wall boundary conditions[J]. Microfluidics and Nanofluidics,2017,22(1): 1-20.
    [28] JIANG Zhongzheng,ZHAO Wenwen,YUAN Zhenyu,et al. Computation of hypersonic flows over flying configurations using a nonlinear constitutive model[J]. AIAA Journal,2019,57(12): 5252-5268. doi: 10.2514/1.J057688
    [29] JIN Shi. Asymptotic-preserving schemes for multiscale physical problems[EB/OL]. [2021-12-04]. https://arxiv.org/abs/2112.05920
    [30] CURTISS C F. The classical Boltzmann equation of a gas of diatomic molecules[J]. The Journal of Chemical Physics,1981,75(1): 376-378. doi: 10.1063/1.441792
    [31] KUBO R. Generalized cumulant expansion method[J]. Journal of the Physical Society of Japan,1962,17(7): 1100-1120. doi: 10.1143/JPSJ.17.1100
    [32] MYONG R S. On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules[J]. Physics of Fluids,2014,26(5): 056102.1-056102.18.
    [33] YUAN Zhenyu,ZHAO Wenwen,JIANG Zhongzheng,et al. Modified nonlinear coupled constitutive relations model for hypersonic nonequilibrium flows[J]. Journal of Thermophysics and Heat Transfer,2020,34(4): 848-859. doi: 10.2514/1.T5761
    [34] 江中正, 陈伟芳. 基于非线性本构模型的耦合求解算法研究[C]//中国力学大会暨庆祝中国力学学会成立60周年大会论文集. 北京: 中国力学学会, 2017: 816-831.
    [35] JIANG Zhongzheng. An undecomposed hybrid algorithm for nonlinear coupled constitutive relations of rarefied gas dynamics[J]. Communications in Computational Physics,2019,26(3): 880-912. doi: 10.4208/cicp.OA-2018-0056
    [36] KODERA M, TANNO H, TAKAHASHI M, et al. Comparison of re-entry flow computations with high enthalpy shock tunnel experiments[R]. AIAA-2009-7305, 2009.
    [37] BOYD I D,CHEN Gang,CANDLER G V. Predicting failure of the continuum fluid equations in transitional hypersonic flows[J]. Physics of Fluids,1995,7(1): 210-219. doi: 10.1063/1.868720
    [38] HOLMAN T, BOYD I. Numerical investigation of the effects of continuum breakdown on hypersonic vehicle surface properties[R]. AIAA-2008-3928, 2008.
    [39] HE Zhiqiang,JIANG Zhongzheng,ZHANG Huangwei,et al. Analytical method of nonlinear coupled constitutive relations for rarefied non-equilibrium flows[J]. Chinese Journal of Aeronautics,2021,34(2): 136-153. doi: 10.1016/j.cja.2020.06.023
    [40] YUAN Zhenyu,JIANG Zhongzheng,ZHAO Wenwen,et al. Analysis of gas flow over a cylinder at all Knudsen numbers based on non-newtonian constitutive models[J]. International Journal of Modern Physics: B,2020,34(14/15/16): 2040076.1-2040076.5.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  104
  • HTML浏览量:  63
  • PDF量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回