留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带热障涂层气冷叶片孔边局部应力分析

陶倩楠 王延荣 杨顺

陶倩楠, 王延荣, 杨顺. 带热障涂层气冷叶片孔边局部应力分析[J]. 航空动力学报, 2022, 37(10):2188-2200 doi: 10.13224/j.cnki.jasp.20220257
引用本文: 陶倩楠, 王延荣, 杨顺. 带热障涂层气冷叶片孔边局部应力分析[J]. 航空动力学报, 2022, 37(10):2188-2200 doi: 10.13224/j.cnki.jasp.20220257
TAO Qiannan, WANG Yanrong, YANG Shun. Analysis of local stress at hole edge of air-cooled blade with thermal barrier coatings[J]. Journal of Aerospace Power, 2022, 37(10):2188-2200 doi: 10.13224/j.cnki.jasp.20220257
Citation: TAO Qiannan, WANG Yanrong, YANG Shun. Analysis of local stress at hole edge of air-cooled blade with thermal barrier coatings[J]. Journal of Aerospace Power, 2022, 37(10):2188-2200 doi: 10.13224/j.cnki.jasp.20220257

带热障涂层气冷叶片孔边局部应力分析

doi: 10.13224/j.cnki.jasp.20220257
基金项目: 国家科技重大专项(J2019-Ⅳ-0006-0074)
详细信息
    作者简介:

    陶倩楠(1993-),女,博士生,主要研究方向为燃气轮机结构强度评估

  • 中图分类号: V232.4

Analysis of local stress at hole edge of air-cooled blade with thermal barrier coatings

  • 摘要:

    基于有限元法计算了热障涂层-基体系统热失配状态下的孔边应力,计算结果表明:涂层界面法向应力和界面切应力集中于孔边,孔边周向正应力较大,孔边涂层容易出现开裂和剥落。计算并分析了陶瓷层厚度、计算模型外径、氧化层厚度、孔径和温度分布对孔边局部应力的影响,结果表明:界面法向应力和界面切应力的作用范围随陶瓷层厚度的增加而增大,叶片冷却孔边应力计算子模型外径应大于4倍陶瓷层厚度与1/2孔径之和;冷却状态下,氧化层厚度的增加会增大界面法向正应力和界面切应力;高温下,孔径越小孔边陶瓷层周向正应力越大;在孔边温度非均匀分布的情况下界面应力和孔边周向正应力会增大。

     

  • 图 1  涡轮叶片有限元模型、孔边子模型及含中心孔圆盘几何模型

    Figure 1.  Finite element model of the practical turbine blade, the submodel of the area near the film hole and the geometric model for numerical calculation in terms of the characteristics of the film hole

    图 2  不同温度差及不同氧化层厚度时径向应力σx分布

    Figure 2.  Distributions of the radial stress σx for different temperature differences and the thicknesses of TGO

    图 3  不同温度差及不同TGO厚度时切应力τxy分布

    Figure 3.  Distributions of the shear stress τxy for different temperature differences and the thicknesses of TGO

    图 4  不同温度差及不同TGO厚度时TC界面切应力分布

    Figure 4.  Distributions of the shear stress at the TC interface for different temperature differences and thicknesses of TGO layer

    图 5  不同温度差及不同TGO厚度时垂直于界面的轴向正应力σy分布

    Figure 5.  Distributions of the axial stress σy for different temperature differences and thicknesses of TGO layer

    图 6  不同温度差及TGO厚度时TC界面法向正应力分布

    Figure 6.  Distributions of the normal stress σy at the TC interface for different temperature differences and thicknesses of TGO layer

    图 7  Δtw=100 ℃时不同TGO厚度模型中周向正应力σz分布

    Figure 7.  Distributions of the circumferential stress σz for different thicknesses of TGO layer while Δtw=100 ℃

    图 8  分析思路流程图

    Figure 8.  Flow chart of the analysis idea

    图 9  t=20℃时不同TC厚度时TC界面法向正应力及切应力分布

    Figure 9.  Distributions of the normal and shear stress at the TC interface for different thicknesses of TC layer while t=20℃

    图 10  t=20 ℃时不同边界条件时TC界面法向正应力及切应力分布

    Figure 10.  Distributions of the normal and shear stress at the TC interface for different boundary conditions while t=20 ℃

    图 11  t=20 ℃时不同TGO厚度时TC界面法向正应力及切应力

    Figure 11.  Distributions of the normal stress and shear stressat the TC interface for different thicknesses of TGO layer while t=20 ℃

    图 12  t=20℃时不同孔径时TC界面法向正应力和切应力分布

    Figure 12.  Distributions of the normal and shear stress at the TC interface for different hole diameters while t=20℃

    图 13  温度沿径向分布示意图

    Figure 13.  Illustration of the distribution of temperature along the radial direction

    图 14  th= 1000 ℃时,沿径向温度差不同时,TC界面法向正应力及切应力分布

    Figure 14.  Distributions of the normal and shear stress at the TC interface for different temperature differences along the radial direction while th=1000 ℃

    图 15  孔边温度不同,沿径向温度差为200 ℃时,TC界面法向正应力及切应力分布

    Figure 15.  Distributions of the normal and shear stress at the TC interface for different temperatures near the hole while the temperature difference of 200 ℃ along the radial direction

    图 16  沿径向温度差为150℃,温度沿径向分布趋势不同时,TC界面法向正应力及切应力分布(th=900 , 1100 ℃)

    Figure 16.  Distributions of the normal and shear stress at the TC interface while the temperature difference of 150℃ along the radial direction for different temperature distributions along the radial direction (th=900 , 1100 ℃)

    图 17  不同温度分布形式下TC层中周向应力σz分布

    Figure 17.  Distributions of the circumferential stress σz in TC layer for different temperature distribution forms

    表  1  热障涂层系统各层材料参数[12]

    Table  1.   Material parameters of each layer of the thermal barrier coating system[12]

    涂层结构
    (材料)
    弹性模量
    E/GPa
    泊松比
    ν
    线膨胀系数
    α/(10−6·K−1
    TC(YSZ)480.19.0
    TGO(Al2O34000.238.0
    BC(MCrAlY)2000.313.6
    基体
    (PWA 1480)
    1840.312.0
    下载: 导出CSV

    表  2  Δtw=100 $ {{\text{℃}}} $,各层径向应力理论解和有限元计算结果对比

    Table  2.   Comparison of the radial stress obtained from analytical method and finite element method respectively while Δtw=100 $ {{\text{℃}}} $

    模型位置理论解
    σx,a/MPa
    有限元解
    σx,f/MPa
    $\left(\dfrac{ { {\sigma _{x,{\text{f} } } } - {\sigma _{x,{\text{a} } } } } }{ { {\sigma _{x,{\text{a} } } } } }\right)\Big/\text{%}$
    无氧化层TC16.34516.334−0.067
    BC−43.883−43.919−0.082
    基体1.6811.654−1.606
    有氧化层TC16.31916.304−0.092
    TGO210.877210.765−0.053
    BC−44.020−44.0790.134
    基体1.5561.506−3.213
    下载: 导出CSV

    表  3  1150 $ {{\text{℃}}} $下TC层内部径向应力及孔边周向应力的最大值

    Table  3.   Radial stress inside TC layer and maximum value of the circumferential stress near the hole under 1150 $ {{\text{℃}}} $

    Htc/μmTC内部径向
    应力σx/MPa
    TC孔边周向应力
    最大值σz,max/MPa
    10024.9027.34
    20024.6132.83
    25024.4635.26
    30024.3137.15
    40024.0339.83
    下载: 导出CSV

    表  4  模型外径不同时应力计算结果及差异对比

    Table  4.   Comparison of stress calculation results and differences of different model outer diameters

    模型
    外半径R
    t=20 ℃t=1150 ℃
    TC界面法向
    正应力最大值
    σy,max/MPa
    法向正应力
    差异δσ,n/%
    TC界面
    切应力最大值
    τxy,max/MPa
    切应力
    差异δτ/%
    外圆周面
    节点径向位移
    sx,o/mm
    TC层孔边周向
    应力最大值
    σz,,max/MPa
    周向正应力
    差异δσ,c/%
    50Htc
    (参考值)
    568.9077.65−147.8635.26
    30Htc568.990.0277.660.01−88.6235.260
    10Htc568.950.0177.650−29.5435.260
    6Htc570.750.3377.800.19−17.7235.380.34
    5Htc573.310.7877.980.42−14.7735.480.62
    4Htc588.313.4178.781.46−11.8135.330.20
    下载: 导出CSV

    表  5  t=1 150 ${{\text{℃}}}$时,不同TGO厚度下TC层内部径向应力及孔边周向应力最大值

    Table  5.   Radial stress inside TC layer and the maximum value of the circumferential stress in the TC layer near the hole while t=1 150 ${{\text{℃}}}$ for different thicknesses of TGO layer

    Htgo/μmTC内部径向应力
    σx/MPa
    TC孔边周向应力
    最大值σz/MPa
    124.5535.26
    224.4835.39
    324.4235.53
    524.2835.79
    824.0936.17
    下载: 导出CSV

    表  6  不同孔径时1150 ${{\text{℃}}} $下陶瓷层内部径向应力及孔边周向应力最大值

    Table  6.   Radial stress inside the TC layer and the maximum value of the circumferential stress in TC layer near the hole under 1150 ${{\text{℃}}} $ against the diameter of the hole

    Rh/HtcTC内部径向应力
    σx/MPa
    TC孔边周向应力
    最大值σz,max/MPa
    124.4941.88
    224.5535.26
    324.5331.74
    424.4329.66
    下载: 导出CSV
  • [1] 邢宇明,谢刚,周志宇,等. 旋转条件下动叶前缘气膜孔排布局数值研究[EB/OL]. [2022-04-19]. https://kns.cnki.net/kcms/detail/11.2297.v.20220328.1247.002.html.
    [2] MENSCH A,THOLE K A,CRAVEN B A. Conjugate heat transfer measurements and predictions of a blade end wall with a thermal barrier coating[J]. Journal of Turbomachinery,2014,136(12): 1-11.
    [3] HARDWICKE C U,LAU Y C. Advances in thermal spray coatings for gas turbines and energy generation: a review[J]. Journal of Thermal Spray Technology,2013,22(5): 564-576. doi: 10.1007/s11666-013-9904-0
    [4] 张子凡,韩彦冬,王炜哲,等. CMAS渗透下热障涂层界面失效分析[J]. 航空动力学报,2021,36(8): 1702-1711. doi: 10.13224/j.cnki.jasp.20200374

    ZHANG Zifan,HAN Yandong,WANG Weizhe,et al. Interface failure analysis of thermal barrier coatings under CMAS penetration[J]. Journal of Aerospace Power,2021,36(8): 1702-1711. (in Chinese) doi: 10.13224/j.cnki.jasp.20200374
    [5] 刘志远,肖杰,杨丽,等. 涡轮叶片热障涂层隔热性能和应力数值模拟[J]. 湘潭大学学报(自然科学版),2020,42(3): 107-115.

    LIU Zhiyuan,XIAO Jie,YANG Li,et al. Numerical simulation of thermal insulation performance and stress of thermal barrier coatings on turbine blades[J]. Journal of Xiangtan University (Natural Science Edition),2020,42(3): 107-115. (in Chinese)
    [6] 王力,王海斗,底月兰,等. 热障涂层应力产生机制及分布特征[J]. 材料导报,2021,35(17): 17143-17149. doi: 10.11896/cldb.20050158

    WANG Li,WANG Haidou,DI Yuelan,et al. Stress generation mechanism and distribution characteristics in thermal barrier coatings[J]. Materials Reports,2021,35(17): 17143-17149. (in Chinese) doi: 10.11896/cldb.20050158
    [7] SUHIR E. An approximate analysis of stresses in multilayered elastic thin films[J]. Journal of Applied Mechanics,1988,55(1): 143-148. doi: 10.1115/1.3173620
    [8] SUHIR E. Predicted thermally induced stresses in, and the bow of, a circular substrate/thin-film structure[J]. Journal of Applied Physics,2000,88(5): 2363-2370. doi: 10.1063/1.1286096
    [9] JIANG Jishen,MA Xianfeng,WANG Biao. Stress analysis of the thermal barrier coating system near a cooling hole considering the free-edge effect[J]. Ceramics International,2020,46(1): 331-342. doi: 10.1016/j.ceramint.2019.08.267
    [10] MENG Zewei,LIU Yongbao,LI Yujie,et al. An analytical model for predicting residual stress in TBC-film cooling system considering non-uniform temperature field[J]. Journal of Applied Physics,2021,129(13): 1-13.
    [11] JIANG Jishen,WU Di,WANG Weizhe,et al. Fracture behavior of TBCs with cooling hole structure under cyclic thermal loadings[J]. Ceramics International,2020,46(3): 3644-3654. doi: 10.1016/j.ceramint.2019.10.084
    [12] ROSLER J,BAKER M,AUFZUG K. A parametric study of the stress state of thermal barrier coatings: Part Ⅰ creep relaxation[J]. Acta Materialia,2004,52(16): 4809-4817.
    [13] 王铁军,范学领. 热障涂层强度理论与检测技术[M]. 西安:西安交通大学出版社,2016.
    [14] 杨晓光,耿瑞,熊昌炳. 一种简便的隔热涂层残余应力分析方法及结果讨论[J]. 航空动力学报,1997,12(3): 239-242. doi: 10.13224/j.cnki.jasp.1997.03.004

    YANG Xiaoguang,GENG Rui,XIONG Changbing. A simple method for calculation of residual stress in thermal barrier coating[J]. Journal of Aerospace Power,1997,12(3): 239-242. (in Chinese) doi: 10.13224/j.cnki.jasp.1997.03.004
    [15] ALI M Y,CHEN X,NEWAZ G M. Oxide layer development under thermal cycling and its role on damage evolution and spallation in TBC system[J]. Journal of Materials Science,2001,36(18): 4535-4542. doi: 10.1023/A:1017959509216
    [16] HSUEH C H,LUTTRELL C R,LEE S,et al. Interfacial peeling moments and shear forces at free edges of multilayers subjected to thermal stresses[J]. Journal of the American Ceramic Society,2006,89(5): 1632-1638. doi: 10.1111/j.1551-2916.2006.00924.x
    [17] 董会. 等离子喷涂热障涂层的服役性能[M]. 北京:中国石化出版社,2018.
    [18] WEE S,DO J,KIM K,et al. Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines[J]. Applied Sciences-Basel,2020,10(16): 1-24.
    [19] LU Z,MYOUNG S W,KIM E H,et al. Microstructure evolution and thermal durability with coating thickness in APS thermal barrier coatings[J]. Materials Today:Proceedings,2014,1: 35-43. doi: 10.1016/j.matpr.2014.09.009
    [20] NAYEBPASHAEE N,SEYEDEIN S H,ABOUTALEBI M R,et al. Finite element simulation of residual stress and failure mechanism in plasma sprayed thermal barrier coatings using actual microstructure as the representative volume[J]. Surface and Coatings Technology,2016,291: 103-114. doi: 10.1016/j.surfcoat.2016.02.028
    [21] RABIEI A,EVANS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia,2000,48(15): 3963-3976. doi: 10.1016/S1359-6454(00)00171-3
    [22] GUPTA M,SKOGSBERG K,NYLEN P. Influence of topcoat-bondcoat interface roughness on stresses and lifetime in thermal barrier coatings[J]. Journal of Thermal Spray Technology,2014,23(1/2): 170-181.
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  134
  • HTML浏览量:  104
  • PDF量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回