留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶片/叶盘摩擦阻尼结构的非线性模态分析综述

孙业凯 吴亚光 王兴 范雨 袁杰 张大义

孙业凯, 吴亚光, 王兴, 等. 叶片/叶盘摩擦阻尼结构的非线性模态分析综述[J]. 航空动力学报, 2022, 37(10):2167-2187 doi: 10.13224/j.cnki.jasp.20220264
引用本文: 孙业凯, 吴亚光, 王兴, 等. 叶片/叶盘摩擦阻尼结构的非线性模态分析综述[J]. 航空动力学报, 2022, 37(10):2167-2187 doi: 10.13224/j.cnki.jasp.20220264
SUN Yekai, WU Yaguang, WANG Xing, et al. Review of nonlinear modal analysis in friction damping structures of blades/blade disks [J]. Journal of Aerospace Power, 2022, 37(10):2167-2187 doi: 10.13224/j.cnki.jasp.20220264
Citation: SUN Yekai, WU Yaguang, WANG Xing, et al. Review of nonlinear modal analysis in friction damping structures of blades/blade disks [J]. Journal of Aerospace Power, 2022, 37(10):2167-2187 doi: 10.13224/j.cnki.jasp.20220264

叶片/叶盘摩擦阻尼结构的非线性模态分析综述

doi: 10.13224/j.cnki.jasp.20220264
基金项目: 中国博士后科学基金(2021M700326);国家自然科学基金(52005522,12072378);深圳市科技计划(RCYX20210706092137055)
详细信息
    作者简介:

    孙业凯(1995-),男,工程师,博士,主要从事非线性模态数值分析和干摩擦阻尼器分析与设计

    通讯作者:

    吴亚光(1990-),男,助理研究员,博士,主要从事航空发动机结构的振动控制研究。E-mail: yaguangwu@buaa.edu.cn

  • 中图分类号: V231.92

Review of nonlinear modal analysis in friction damping structures of blades/blade disks

  • 摘要:

    概述了非线性模态的理论基础以及非线性动力学分析的一般数值方法;进而针对含干摩擦非线性环节的结构,总结了阻尼非线性模态的相关研究进展;在此基础上,重点综述了国内外近十年来采用阻尼非线性模态数值方法在航空发动机带冠叶片、缘板阻尼器、叶根阻尼与干摩擦阻尼环分析与设计中的应用;列举了目前用于验证非线性模态的先进试验技术。提出了非线性模态在干摩擦阻尼结构动力学分析中亟需解决和关注的若干问题。研究表明:非线性模态逐渐从理论研究阶段过渡到工程应用阶段。结合模型降维技术,阻尼非线性模态已经可用于提取带干摩擦阻尼叶片/叶盘高保真有限元模型的模态特征。拓展能量平衡法与非线性模态综合法搭建了非线性模态与稳态响应的桥梁,可以显著提升基于响应的参数分析效率。非线性模态试验技术的研究处于起步阶段,尚无法应用于工程复杂结构。

     

  • 图 1  杜芬振子系统以周期运动描述的非线性模态

    Figure 1.  Nonlinear mode for Duffing oscillator in periodic motion description

    图 2  杜芬振子系统以不变流形描述的非线性模态

    Figure 2.  Nonlinear mode for Duffing oscillator in invariant manifold description

    图 3  2自由度高次刚度非线性系统的内共振

    Figure 3.  Internal resonance of the 2 degrees of freedom nonlinear system with higher-order stiffness

    图 4  频时域转换法的流程

    Figure 4.  Alternating frequency-time method process

    图 5  延拓过程中的预测子步和修正子步

    Figure 5.  Predictor and corrector stepin continuation process

    图 6  不同静态摩擦接触模型

    Figure 6.  Different static friction contact models

    图 7  一维动态摩擦接触模型

    Figure 7.  One-dimensional dynamic friction contact models

    图 8  二维动态摩擦接触模型

    Figure 8.  Two-dimensional dynamic friction contact models

    图 9  三维动态摩擦接触模型

    Figure 9.  Three-dimensional dynamic friction contact model

    图 10  宏滑移摩擦模型(詹金斯单元)与微滑移摩擦模型(Dahl)迟滞回线对比

    Figure 10.  Hysteresis loops of the macroslip friction model (Jenkins element) and microslip friction model (Dahl)

    图 11  通过dNNM结合NMS获得频响与直接通过M-HBM获得的频响对比[30]

    Figure 11.  Comparison of frequency response obtained by M-HBM and dNNM combined with NMS[30]

    图 12  通过dNNM和E-EBM获得的共振点与通过M-HBM获得的频响共振点对比[31]

    Figure 12.  Comparison of resonant solutions obtained by M-HBM and dNNM combined with E-EBM[31]

    图 13  Krack等[30]采用的带冠叶片轮盘模型

    Figure 13.  Finite element model of dummy bladed disk with shrouded tips by Krack et al[30]

    图 14  采用NMS与M-HBM计算获得的整圈带冠叶片的频响对比[30]

    Figure 14.  Comparison of the frequency-response of the full-circle shrouded blades simulated by the NMS and the M-HBM [30]

    图 15  采用线性/非线性模态计算出的各幅值下整圈带冠叶片的气动阻尼与模态阻尼(交点为极限环)[85]

    Figure 15.  Aerodynamic damping and modal damping of the full-circle shrouded blades at various amplitudes by using linear/nonlinear modes (intersection refers to limit cycle oscillation) [85]

    图 16  考虑界面参数散度下的缘板阻尼器模态阻尼随系统能量变化曲线及其分散带[87]

    Figure 16.  Modal damping generated by the under-platform damper and its distribution versus kinetic energy considering the uncertainties of contact parameters[87]

    图 17  Krack等[88]采用的模拟叶盘-楔形缘板阻尼块有限元模型

    Figure 17.  Finite element model of the dummy bladed disk and the wedge under-platform damper by Krack et al[88]

    图 18  不同摩擦因数下缘板阻尼器产生的模态阻尼比随振幅的变化[88]

    Figure 18.  Modal damping generated by under-platform dampers versus vibration amplitude curves for different friction coefficients[88]

    图 19  Laxalde等[33]采用的含叶根榫头阻尼的叶片有限元模型

    Figure 19.  Finite element model of the blade with blade root damping by Laxalde et al[33]

    图 20  磨损下考虑叶根阻尼叶片的共振频率/模态阻尼比随循环次数的演化[33]

    Figure 20.  Evolution of resonant frequency/ modal damping ratio with fretting-wear cycles for the blade considering root damping[33]

    图 21  袁杰等[91]采用的纳入榫头榫槽接触的叶片-轮盘有限元模型

    Figure 21.  Finite element model of the bladed disk considering the contact of blade root joints by YUAN Jie et al [91]

    图 22  不同激振水平下基于dNNM结合NMS和使用M-HBM直接计算得到的考虑叶根阻尼的叶片频响对比[91]

    Figure 22.  Comparison of the frequency response synthesized by dNNM combined with NMS and directly calculated by M-HBM at different excitation levels for the blade with root damping[91]

    图 23  Laxalde等[33]采用的压气机整体叶盘-干摩擦阻尼环有限元模型

    Figure 23.  Finite element model of the compressor blisk with dry friction damping ring by Laxalde et al[33]

    图 24  不同摩擦因数下整体叶盘-干摩擦阻尼环模态频率与阻尼比随振幅的变化[33]

    Figure 24.  Modal frequency and damping ratio of blisk with dry friction damping ring versus vibration amplitude for different friction coefficients [33]

    图 25  孙业凯等[97]采用的模拟整体叶盘-干摩擦阻尼环有限元模型

    Figure 25.  Finite element model of the simulation blisk with dry friction damping ring by SUN Yekai et al[97]

    图 26  几何设计空间内整体叶盘-摩擦阻尼环系统的共振频率/模态阻尼比随振幅的变化[97]

    Figure 26.  Resonance frequency and damping ratio versus vibration amplitude of the blisk with friction damping ring system in the whole design space of geometry parameters[97]

    图 27  吴亚光等[98]采用的整体叶盘-压电/干摩擦复合阻尼环模型

    Figure 27.  Blisk with a piezo/friction hybrid damping ring model by WU Yaguang et al[98]

    图 28  通过CNM获得的复合阻尼环产生的阻尼比与非线性模态机电耦合系数[98]

    Figure 28.  Modal damping ratio and nonlinear modal electromechanical coupling factor generated by the hybrid ring damper through CNM[98]

    图 29  Sanliturk等[101]设计的涡轮叶片缘板阻尼器动力学试验装置

    Figure 29.  Dynamic test rig for turbine blade with underplatform damper by Sanliturk et al[101]

    图 30  Schwarz等[103]开展的涡轮叶片叶根榫头动力学试验装置

    Figure 30.  Dynamic test rig for turbine blade and tenon by Schwarz et al[103]

    图 31  王兴等[104]开展的风扇叶片全场模态试验

    Figure 31.  Full-field modal test for fan blade by WANG Xing et al[104]

  • [1] 李其汉,王延荣,王建军. 航空发动机叶片高循环疲劳失效研究[J]. 航空发动机,2003,29(4): 16-17,41. doi: 10.3969/j.issn.1672-3147.2003.04.004

    LI Qihan,WANG Yanrong,WANG Jianjun. Investigation of high cycle fatigue failures for the aero engine blades[J]. Aeroengines,2003,29(4): 16-17,41. (in Chinese) doi: 10.3969/j.issn.1672-3147.2003.04.004
    [2] 洪杰,刘书国,张大义,等. 小型短寿命涡扇发动机涡轮叶片疲劳失效分析[J]. 航空动力学报,2012,27(3): 604-609. doi: 10.13224/j.cnki.jasp.2012.03.020

    HONG Jie,LIU Guoshu,ZHANG Dayi,et al. Fatigue failure analysis of turbine blade in miniature short-life turbofan engine[J]. Journal of Aerospace Power,2012,27(3): 604-609. (in Chinese) doi: 10.13224/j.cnki.jasp.2012.03.020
    [3] BARTSCH T M.High cycle fatigue (HCF) science and technology program 2002 annual report [EB/OL].[2014-04-01].http://www.pr.afrl.af.mil/divisions/prt/hcf/2002report/.
    [4] KRACK M,SALLES L,THOUVEREZ F. Vibration prediction of bladed disks coupled by friction joints[J]. Archives of Computational Methods in Engineering,2016,24: 589-636.
    [5] PESARESI L,ARMAND J,SCHWINGSHACKL C,et al. An advanced under platform damper modelling approach based on a microslip contact model[J]. Journal of Sound and Vibration,2018,436: 327-340. doi: 10.1016/j.jsv.2018.08.014
    [6] PESARESI L,SALLES L,JONES A,et al. Modelling the nonlinear behaviour of an under platform damper test rig for turbine applications[J]. Mechanical Systems and Signal Processing,2017,85: 662-679. doi: 10.1016/j.ymssp.2016.09.007
    [7] DENIMAL E,EL HADDAD F,WONG C,et al. Topological optimization of under-platform dampers with moving morphable components and global optimization algorithm for nonlinear frequency response[J]. Journal of Engineering for Gas Turbines and Power,2021,143(2): 021021.1-021021.9.
    [8] YUAN Ye,JONES A,SETCHFIELD R,et al. Robust design optimization of under platform dampers for turbine applications using a surrogate model[J]. Journal of Sound and Vibration,2021,494: 115528.1-15528.15.
    [9] PANNING L,SEXTRO W,POPP K.Optimization of the contact geometry between turbine blades and under platform dampers with respect to friction damping [R].Amsterdam,Netherlands:ASME Turbo Expo:Power for Land,Sea,and Air,2002.
    [10] PANNING L,SEXTRO W,POPP K.Optimization of interblade friction damper design [R].Munich,Germany:ASME Turbo Expo:Power for Land,Sea,and Air,2000.
    [11] GASTALDI C,GOLA M M. Pre-optimization of asymmetrical underplatform dampers[J]. Journal of Engineering for Gas Turbines and Power,2016,139(1): 012504.1-012504.9.
    [12] GASTALDI C,BERRUTI T M,GOLA M M. Best practices for underplatform damper designers[J]. Journal of Mechanical Engineering Science,2018,232(7): 1221-1235. doi: 10.1177/0954406217753654
    [13] LAXALDE D,THOUVEREZ F,LOMBARD J P.Forced response analysis of integrally bladed disks with friction ring dampers[J].Journal of Vibration and Acoustics,2010,132(1):011013.1-011013.9.
    [14] LAXALDE D,GIBERT C,THOUVEREZ F.Experimental and numerical investigations of friction rings damping of blisks[R].Berlin,Germany:ASME Turbo Expo:Power for Land,Sea,and Air,2008.
    [15] LUPINI A,EPUREANU B I. A friction-enhanced tuned ring damper for bladed disks[J]. Journal of Engineering for Gas Turbines and Power,2020,143(1): 011002.1-011002.8.
    [16] 陈璐璐,马艳红,杨鑫,洪杰. 带干摩擦阻尼结构叶片振动响应试验[J]. 航空动力学报,2008,23(9): 1647-1653. doi: 10.13224/j.cnki.jasp.2008.09.029

    CHEN Lulu,MA Yanhong,YANG Xin,et al. Experiment of vibration and response of blade with dry friction structure[J]. Journal of Aerospace Power,2008,23(9): 1647-1653. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.09.029
    [17] 李迪,洪杰,陈璐璐. 带冠涡轮叶片干摩擦阻尼减振试验研究[J]. 燃气涡轮试验与研究,2008,21(4): 22-27. doi: 10.3969/j.issn.1672-2620.2008.04.005

    LI Di,HONG Jie,CHEN Lulu. Experiment of dry friction damping effect of shrouded turbine blade[J]. Gas Turbine Experiment and Research,2008,21(4): 22-27. (in Chinese) doi: 10.3969/j.issn.1672-2620.2008.04.005
    [18] 李琳,刘久周,李超. 干摩擦阻尼器对宽频多阶次激励减振效果分析[J]. 航空动力学报,2016,31(9): 2171-2180.

    LI Lin,LIU Jiuzhou,LI Chao. Analysis on damping effect of dry friction damper under wideband multi-harmonic excitation[J]. Journal of Aerospace Power,2016,31(9): 2171-2180. (in Chinese)
    [19] 高钱,李琳,吴亚光,等.考虑盘片耦合的缘板阻尼器减振性能分析方法[J].推进技术, 2022, 43(7):341-352.GAO Qian, LI Lin, WU Yaguang, et al. On the vibration reduction performance of underplatform dampers considering blade-disk coupling[J]. Journal of Propulsion Technology, 2022, 43(7):341-352. (in Chinese)
    [20] 李琳,高钱,吴亚光,等. 考虑参数关联的缘板阻尼器减振性能分析[J]. 航空动力学,2021,36(8):1657-1668.

    LI Lin,GAO Qian,WU Yaguang,and FAN Yu. On the vibration reduction performace of underplatform dampers considering parameter correlation[J]. Journal of Aerospace Power,2021,36(8): 1657-1668. (in Chinese)
    [21] 马皓晔,李琳,范雨,等. 基于加速动态拉格朗日法的摩擦片阻尼分析[J]. 航空学报,2019,40(12): 121-133. doi: 10.7527/S1000-6893.2019.23283

    MA Haoye,LI Lin,FAN Yu,et al. Damping performance analysis of friction patches using an accelerated dynamic Lagrange method[J]. Acta Aeronautica et Astronautic Sinica,2019,40(12): 121-133. (in Chinese) doi: 10.7527/S1000-6893.2019.23283
    [22] ZHANG Dayi,GAO Bin,HONG Jie,et al. Experimental investigation on dynamic response of flat blades with underplatform dampers[J]. Chinese Journal of Aeronautics,2019,32(12): 2667-2678. doi: 10.1016/j.cja.2019.04.022
    [23] 漆文凯,高德平. 带摩擦阻尼装置系统振动响应分析方法研究[J]. 航空动力学报,2006,21(1): 161-167. doi: 10.3969/j.issn.1000-8055.2006.01.029

    QI Wenkai,GAO Deping. Study of vibration response analysis method for the dry friction damping systems[J]. Journal of Aerospace Power,2006,21(1): 161-167. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.01.029
    [24] 谢永慧,张荻.带摩擦阻尼器长叶片振动特性优化研究[J].机械强度,2007,29(4):548-552.

    XIE Yonghui,ZHANG Di,Numerical model and optimization for dynamic characteristic of long blade with friction damper[J].Journal of Mechanical Strength,2007,29(4):548-552.(in Chinese)
    [25] 徐自力,常东锋,刘雅琳. 基于微滑移解析模型的干摩擦阻尼叶片稳态响应分析[J]. 振动工程学报,2008,21(5): 505-510. doi: 10.3969/j.issn.1004-4523.2008.05.014

    XU Zili,CHANG Dongfeng,LIU Yalin. Forced response analysis of blade system with dry friction damper using one-bar microslip analytic model[J]. Journal of Vibration Engineering,2008,21(5): 505-510. (in Chinese) doi: 10.3969/j.issn.1004-4523.2008.05.014
    [26] 张欢,李光辉,梁恩波. 一种摩擦阻尼器在整体叶盘结构的应用[J]. 航空动力学报,2017,32(4): 800-807.

    ZHANG Huan,LI Guanghui,LIANG Enbo. Application of a friction damper in blisk structure[J]. Journal of Aerospace Power,2017,32(4): 800-807. (in Chinese)
    [27] 李琳,刘久周,李超. 航空发动机中的干摩擦阻尼器及其设计技术研究进展[J]. 航空动力学报,2016,31(10): 2305-2317.

    LI Lin,LIU Jiuzhou,LI Chao. Review of the dry friction dampers in aero-engine and their design technologies[J]. Journal of Aerospace Power,2016,31(10): 2305-2317. (in Chinese)
    [28] LAXALDE D,THOUVEREZ F. Complex non-linear modal analysis for mechanical systems:application to turbomachinery bladings with friction interfaces[J]. Journal of Sound and Vibration,2009,322(4/5): 1009-1025.
    [29] KRACK M. Nonlinear modal analysis of nonconservative systems:Extension of the periodic motion concept[J]. Computers and Structures,2015,154: 59-71. doi: 10.1016/j.compstruc.2015.03.008
    [30] KRACK M,PANNING L,WALLASCHEK J. A method for nonlinear modal analysis and synthesis:application to harmonically forced and self-excited mechanical systems[J]. Journal of Sound and Vibration,2013,332(25): 6798-6814. doi: 10.1016/j.jsv.2013.08.009
    [31] SUN Yekai,VIZZACCARO A,YUAN Jie,et al. An extended energy balance method for resonance prediction in forced response of systems with non-conservative nonlinearities using damped nonlinear normal mode[J]. Nonlinear Dynamics,2021,103: 3315-3333. doi: 10.1007/s11071-020-05793-2
    [32] JOANNIN C,CHOUVION B,THOUVEREZ F,et al. A nonlinear component mode synthesis method for the computation of steady-state vibrations in non-conservative systems[J]. Mechanical Systems and Signal Processing,2017,83: 75-92. doi: 10.1016/j.ymssp.2016.05.044
    [33] LAXALDE D,SALLES L,BLANC L,et al.Non-linear modal analysis for bladed disks with friction contact interfaces[R].Berlin,Germany:ASME Turbo Expo:Power for Land,Sea,and Air,2008.
    [34] KRACK M,PANNING L,WALLASCHEK J,et al. Reduced order modeling based on complex nonlinear modal analysis and its application to bladed disks with shroud contact[J]. Journal of Engineering for Gas Turbines and Power,2013,135(10): 102502.1-102502.8.
    [35] SARROUY E:Phase driven modal synthesis for forced response evaluation[R].Marseille,France:the 7 th International Conference on Nonlinear Vibrations,Localization and Energy Transfer,2019.
    [36] ROSENBERG R M. Normal modes of nonlinear dual-mode systems[J]. Journal of Applied Mechanics,1960,27(2): 263-268. doi: 10.1115/1.3643948
    [37] RAND R H. A higher order approximation for non-linear normal modes in two degree of freedom systems[J]. International Journal of Non-Linear Mechanics,1971,6(4): 545-547. doi: 10.1016/0020-7462(71)90049-7
    [38] RAND R H. A direct method for non-linear normal modes[J]. International Journal of Non-Linear Mechanics,1974,9(5): 363-368. doi: 10.1016/0020-7462(74)90021-3
    [39] SZEMPLINSKA-STUPNICKA W.Non-linear normal modes and the generalized ritz method in the problems of vibrations of non-linear elastic continuous systems[J].International Journal of Non-Linear Mechanics,18(2):149-165.
    [40] 刘济科,赵令诚,方同. 非线性系统模态分叉与模态局部化现象[J]. 力学学报,1995,27(5): 614-618.

    LIU Jike,ZHAO Lingcheng,FANG Tong. Bifurcation and localization phenomena of nonlinear modes in a nonlinear system[J]. Acta Mechanica Sinica,1995,27(5): 614-618. (in Chinese)
    [41] VAKAKIS A F. Non-linear normal modes (NNMs) and their applications in vibration theory: an overview[J]. Mechanical Systems and Signal Processing,1997,11: 3-22. doi: 10.1006/mssp.1996.9999
    [42] 徐健学,蒋耀林,江俊,等. 非线性科学的研究主流综述[J]. 飞行力学,1996,14(1): 17-22,35. doi: 10.13645/j.cnki.f.d.1996.01.003

    XU Jianxue,JIANG Yaolin,JIANG Jun,et al. A summary of the main trends of nonlinear science[J]. Flight Dynamics,1996,14(1): 17-22,35. (in Chinese) doi: 10.13645/j.cnki.f.d.1996.01.003
    [43] MIKHLIN Y V,AVRAMOV. K V.Nonlinears normal modes for vibrating mechanical systems:review of theoretical developments[J]. Applied Mechanics Reviews,2010,63(6): 060802.1-060802.21.
    [44] 李欣业,陈予恕,吴志强等. 多自由度内共振系统非线性模态的分岔特性[J]. 力学学报,2002,34(3): 401-407. doi: 10.3321/j.issn:0459-1879.2002.03.012

    LI Xinye,CHEN Yushu,WU Zhiqiang,et al. Bifurcation of nonlinear normal modes of multi-degree-of-freedom systems within ternal resonance[J]. Acta Mechanica Sinica,2002,34(3): 401-407. (in Chinese) doi: 10.3321/j.issn:0459-1879.2002.03.012
    [45] PEETERS M,VIGUIE R,S SERANDOUR G,et al. Nonlinear normal modes:Part ii:toward a practical computation using numerical continuation techniques[J]. Mechanical Systems and Signal Processing,2009,23: 195-216. doi: 10.1016/j.ymssp.2008.04.003
    [46] KRYLOV N,BOGOLIUBOV N.Introduction to Non-linear Mechanics[M].Princeton:Princeton University Press,1943.
    [47] SHAW S W,PIERRE C. Non-linear normal modes and invariant manifolds[J]. Journal of Sound and Vibration,1991,150(1): 170-173. doi: 10.1016/0022-460X(91)90412-D
    [48] SHAW S W,PIERRE C. Normal modes for non-linear vibratory systems[J]. Journal of Sound and Vibration,1993,164(1): 85-124. doi: 10.1006/jsvi.1993.1198
    [49] HALLER G,PONSIOEN S. Nonlinear normal modes and spectral submanifolds:existence,uniqueness and use in model reduction[J]. Nonlinear Dynamics,2016,86: 1493-1534. doi: 10.1007/s11071-016-2974-z
    [50] GENDELMAN O,MANEVITCH L,VAKAKIS A,et al. A degenerate bifurcation structure in the dynamics of coupled oscillators with essential stiffness nonlinearities[J]. Nonlinear Dynamics,2003,33: 1-10. doi: 10.1023/A:1025515112708
    [51] JEZEQUEL L,LAMARQUE C. Analysis of non-linear dynamical systems by the normal form theory[J]. Journal of Sound and Vibration,1991,149(3): 429-459. doi: 10.1016/0022-460X(91)90446-Q
    [52] TOUZE C.Normal form theory and nonlinear normal modes:theoretical settings and applications[C]// Modal Analysis of Nonlinear Mechanical Systems.New York,US:Springer,2014:75-160.
    [53] NAYFEH A H. On direct methods for constructing nonlinear normal modes of continuous systems[J]. Journal of Vibration and Control,1995,1(4): 389-430. doi: 10.1177/107754639500100402
    [54] 陈予恕,吴志强. 非线性模态理论的研究进展[J]. 力学进展,1997,27(3): 289-300. doi: 10.6052/1000-0992-1997-3-J1998-211

    CHEN Yushu,WU Zhiqiang. Advances in study on theories of nonlinear normal modes[J]. Advances in Mechanics,1997,27(3): 289-300. (in Chinese) doi: 10.6052/1000-0992-1997-3-J1998-211
    [55] 李欣业,陈予恕,吴志强. 非线性模态理论及其研究进展[J]. 河北工业大学学报,2004,33(4): 19-26. doi: 10.3969/j.issn.1007-2373.2004.04.005

    LI Xinye,CHEN Yushu,WU Zhiqiang. The theory of nonlinear normal modes and its advance[J]. Journal of Hebei University of Technology,2004,33(4): 19-26. (in Chinese) doi: 10.3969/j.issn.1007-2373.2004.04.005
    [56] RENSON L,KERSCHEN G,COCHELIN B. Numerical computation of nonlinear normal modes in mechanical engineering[J]. Journal of Sound and Vibration,2016,364: 177-206. doi: 10.1016/j.jsv.2015.09.033
    [57] JAHN M,TATZKO S,PANNING L,et al. Comparison of different harmonic balance based methodologies for computation of nonlinear modes of non-conservative mechanical systems[J]. Mechanical Systems and Signal Processing,2019,127: 159-171. doi: 10.1016/j.ymssp.2019.03.005
    [58] SUN Yekai,YUAN Jie,VIZZACCARO A,et al. Comparison of different methodologies for the computation of damped nonlinear normal modes and resonance prediction of systems with non-conservative nonlinearities[J]. Nonlinear Dynamics,2021,104: 3077-3107. doi: 10.1007/s11071-021-06567-0
    [59] YU Pingchao,MA Yanhong,HONG J,et al. Application of complex nonlinear modes to determine dry whip motion in a rubbing rotor system[J]. Chinese Journal of Aeronautics,2021,34(1): 209-225. doi: 10.1016/j.cja.2020.09.049
    [60] DOKAINISH M A,SUBBARAJ K. A survey of direct time-integration methods in computational structural dynamics-I.Explicit methods[J]. Computers and Structures,1989,32(6): 1371-1386. doi: 10.1016/0045-7949(89)90314-3
    [61] DOEDEL E,CHAMPNEYS A,FAIRGRIEVE T,et al.Auto 97:continuation and bifurcation software for ordinary differential equations (with HomCont)[R].Montreal,Canada:Concordia University,1999.
    [62] AL-QASSAB M,NAIR S. Wavelet-Galerkin method for free vibrations of elastic cable[J]. Journal of Engineering Mechanics,2003,129(3): 350-357. doi: 10.1061/(ASCE)0733-9399(2003)129:3(350)
    [63] ASCHER U,CHRISTIANSEN J,RUSSELL R D. A collocation solver for mixed order systems of boundary value problems[J]. Mathematics of Computation,1979,146(33): 659-679. doi: 10.1090/S0025-5718-1979-0521281-7
    [64] DANKOWICZ H,SCHILDER F. An extended continuation problem for bifurcation analysis in the presence of constraints[J]. Journal of Computational and Nonlinear Dynamics,2011,6: 031003.1-031003.8.
    [65] CAMERON T M,GRIFFIN J H. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems[J]. Journal of Applied Mechanics,1989,56(1): 149-154. doi: 10.1115/1.3176036
    [66] ALLGOWER E L,GEORG K.Allgower E L.Introduction to numerical continuation methods[M].Society for Industrial and Applied Mathematics,2003.
    [67] SALLES L,STAPLES B,HOFFMANN N,et al. Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions[J]. Nonlinear Dynamics,2016,86: 1897-1911. doi: 10.1007/s11071-016-3003-y
    [68] COCHELIN B,DAMIL N,POTIER-FERRY M. Asymptotic-numerical methods and Pade approximants for non-linear elastic structures[J]. International Journal for Numerical Methods in Engineering,1994,37(7): 1187-1213. doi: 10.1002/nme.1620370706
    [69] WOIWODE L,BALAJI N N,KAPPAUF J,et al. Comparison of two algorithms for harmonic balance and path continuation[J]. Mechanical Systems and Signal Processing,2020,136: 106503.1-106503.23.
    [70] GRIFFIN J H. Friction damping of resonant stresses in gas turbine engine airfoils[J]. Journal of Engineering for Power,1980,102(2): 329-333. doi: 10.1115/1.3230256
    [71] YANG B D,CHU M L,MENQ C H. Stick-slip-separation analysis and non-linear stiffness and damping characterization of friction contacts having variable normal load[J]. Journal of Sound and Vibration,1998,210(4): 461-481. doi: 10.1006/jsvi.1997.1305
    [72] YANG B D,MENQ C H. Characterization of 3d contact kinematics and prediction of resonant response of structures having 3d frictional constraint[J]. Journal of Sound and Vibration,1998,217(5): 909-925. doi: 10.1006/jsvi.1998.1802
    [73] IWAN W D. A distributed-element model for hysteresis and its steady-state dynamic response[J]. Journal of Applied Mechanics,1966,33(4): 893-900. doi: 10.1115/1.3625199
    [74] DAHL P R. Solid friction damping of mechanical vibrations[J]. AIAA Journal,1976,14(12): 1675-1682. doi: 10.2514/3.61511
    [75] CANUDAS DE WIT C,OLSSON H,ASTROM P K et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control,1995,40(3): 419-425. doi: 10.1109/9.376053
    [76] BOUC R. A mathematical model for hysteresis[J]. Acustica,1971,24(1): 16-25.
    [77] WEN Y K. Method for random vibration of hysteretic systems[J]. Journal of the Engineering Mechanics Division,1976,102(2): 249-263. doi: 10.1061/JMCEA3.0002106
    [78] VALANIS K C. Fundamental consequences of a new intrinsic time measure:plasticity as a limit of the end chronic theory[J]. Archives of Mechanics,1980,32: 171-191.
    [79] WU Yaguang,LI Lin,FAN Yu,et al. Design of wave-like dry friction and piezoelectric hybrid dampers for thin-walled structures[J]. Journal of Sound and Vibration,2020,493: 115821.1-115821.25.
    [80] KERSCHEN G,KOWTKO J J,MCFARLAND D M,et al. Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators[J]. Nonlinear Dynamics,2007,47: 285-309.
    [81] VAKAKIS A F. Inducing passive nonlinear energy sinks in vibrating systems[J]. Journal of Vibration and Acoustics,2001,123(3): 324-332. doi: 10.1115/1.1368883
    [82] HILL T,CAMMARANO A,NEILD S,et al. Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves[J]. Journal of Sound and Vibration,2015,349: 276-288. doi: 10.1016/j.jsv.2015.03.030
    [83] HONG Dongxiao,HILL T,NEILD S. Efficient energy balancing across multiple harmonics of nonlinear normal modes[J]. Nonlinear Dynamics,2022,108: 2935-2959. doi: 10.1007/s11071-022-07428-0
    [84] CENEDESE M,HALLER G. How do conservative backbone curves perturb into forced responses?:a Melnikov function analysis[J]. Mathematical, Physical and Engineering Sciences,2020,476(2234): 20190494.1-20190494.26.
    [85] BERTHOLD C,GROSS J,FREY C,et al. Analysis of friction-saturated flutter vibrations with a fully-coupled frequency domain method[J]. Journal of Engineering for Gas Turbines and Power,2020,142(11): 111007.1-111007.10.
    [86] BERTHOLD C,GROSS J,FREY C,et al. Development of a fully-coupled harmonic balance method and a refined energy method for the computation of flutter-induced limit cycle oscillations of bladed disks with nonlinear friction contacts[J]. Journal of Fluids and Structures,2021,102: 103233.1-103233.19.
    [87] SUN Yekai,YUAN Jie,PESARESI L,et al. Parametric study and uncertainty quantification of the nonlinear modal properties of frictional dampers[J]. Journal of Vibration and Acoustics,2020,142(5): 051102.1-051102.9.
    [88] KRACK M,TATZKO S,PANNING L,et al. Reliability optimization of friction-damped systems using nonlinear modes[J]. Journal of Sound and Vibration,2014,333: 2699-2712. doi: 10.1016/j.jsv.2014.02.008
    [89] SALLES L,BLANC L,THOUVEREZ F,et al. Dynamic analysis of fretting-wear in friction contact interfaces[J]. Journal of Engineering for Gas Turbines and Power,2009,132(1): 012503.1-012503.9.
    [90] SALLES L,BLANC L,THOUVEREZ F,et al. Dual time stepping algorithms with the high order harmonic balance method for contact interfaces with fretting-wear[J]. Journal of Engineering for Gas Turbines and Power,2012,134(3): 032503.1-032503.7.
    [91] YUAN Jie,SUN Yekai,SCHWINGSHACKL C,et al. Computation of damped nonlinear normal modes for large scale nonlinear systems in a self-adaptive modal subspace[J]. Mechanical Systems and Signal Processing,2022,162: 108082.1-108082.16.
    [92] YUAN Jie,SALLES L,HADDAD F E,et al. An adaptive component mode synthesis method for dynamic analysis of jointed structure with contact friction interfaces[J]. Computers and Structures,2020,229: 106177.1-106177.15.
    [93] QUAEGEBEUR S,CHOUVIOU B,and TOUVEREZ F.Nonlinear cyclic reduction for the analysis of mistuned cyclic systems[J].Journal of Sound and Vibration,2021,499:116002.1-116002.23.
    [94] LIU Jiuzhou,LI Lin,FAN Yu.A comparison between the friction and piezoelectric synchronized switch dampers for blisks[J].Journal of Intelligent Material Systems and Structures.2018,29(12):2693-2705.
    [95] SUN Yekai,YUAN Jie,DENIMAL E,et al. Nonlinear modal analysis of frictional ring damper for compressor blisk[J]. Journal of Engineering for Gas Turbines and Power,2021,143(3): 031008.1-031008.8.
    [96] SUN Yekai,YUAN Jie,DENIMAL E,et al. A study of the contact interface for compressor blisks with ring dampers using nonlinear modal analysis[J]. Materials Science and Engineering,2021,1081: 012041.1-012041.7.
    [97] SUN Yekai,DENIMAL E,YUAN Jie,et al. Geometric design of friction ring dampers in blisks using nonlinear modal analysis and kriging surrogate model[J]. Structural and Multidisciplinary Optimization,2022,65: 98.1-98.25.
    [98] WU Yaguang,LI Lin,FAN Yu,et al. Design of dry friction and piezoelectric hybrid ring dampers for integrally bladed disks based on complex nonlinear modes[J]. Computers and Structures,2020,233: 106237.1-106237.19.
    [99] WU Yaguang,LI Lin,FAN Yu.Nonlinear modal electromechanical coupling factor for piezoelectric structures containing nonlinearities[EB/OL].[2022-03-25].https://doi.org/10.1016/j.cja.2022.06.020
    [100] SETIO S,SETIO H D,JEZEQUEL L. A method of non-linear modal identification from frequency response tests[J]. Journal of Sound and Vibration,1992,158(3): 497-515. doi: 10.1016/0022-460X(92)90421-S
    [101] SANLITURK K Y,EWINS D J,STANBRIDGE A B. Underplatform dampers for turbine blades:theoretical modeling,analysis,and comparison with experimental data[J]. Journal of Engineering for Gas Turbines and Power,1998,123(4): 919-929.
    [102] PEETERS M,KERSCHEN G,GOLINVAL J C. Dynamic testing of nonlinear vibrating structures using nonlinear normal modes[J]. Journal of Sound and Vibration,2011,330(3): 486-509. doi: 10.1016/j.jsv.2010.08.028
    [103] SCHWARZ S,KOHLMANN L,HARTUNG A,et al. Validation of a turbine blade component test with frictional contacts by phase-locked-loop and force-controlled measurements[J]. Journal of Engineering for Gas Turbines and Power,2020,142(5): 051006.1-051006.8.
    [104] WANG Xing,SZYDLOWSKI M. ,YUAN Jie,et al.A multi-step interpolated-FFT procedure for full-field nonlinear modal testing of turbomachinery components[J]. Mechanical Systems and Signal Processing,2022,169: 108771.1-108771.32.
  • 加载中
图(31)
计量
  • 文章访问数:  269
  • HTML浏览量:  188
  • PDF量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回