留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压力反馈的等离子体主动流动控制试验

牛中国 刘捷 胡秋琦 梁华

牛中国, 刘捷, 胡秋琦, 等. 基于压力反馈的等离子体主动流动控制试验[J]. 航空动力学报, 2024, 39(3):20220265 doi: 10.13224/j.cnki.jasp.20220265
引用本文: 牛中国, 刘捷, 胡秋琦, 等. 基于压力反馈的等离子体主动流动控制试验[J]. 航空动力学报, 2024, 39(3):20220265 doi: 10.13224/j.cnki.jasp.20220265
NIU Zhongguo, LIU Jie, HU Qiuqi, et al. Experiment of the plasma active flow control based on pressure feedback[J]. Journal of Aerospace Power, 2024, 39(3):20220265 doi: 10.13224/j.cnki.jasp.20220265
Citation: NIU Zhongguo, LIU Jie, HU Qiuqi, et al. Experiment of the plasma active flow control based on pressure feedback[J]. Journal of Aerospace Power, 2024, 39(3):20220265 doi: 10.13224/j.cnki.jasp.20220265

基于压力反馈的等离子体主动流动控制试验

doi: 10.13224/j.cnki.jasp.20220265
详细信息
    作者简介:

    牛中国(1980-),男,高级工程师,博士,主要从事流动显示与流动控制方面的研究。E-mail:13304808020@163.com

  • 中图分类号: V211.7

Experiment of the plasma active flow control based on pressure feedback

  • 摘要:

    基于翼面压力分布与流动分离的对应关系,提出了一种用于等离子体激励抑制翼面流动分离的反馈控制方法,该方法通过模型表面特征点的压力判断流动分离情况,根据判断结果自动施加或取消等离子体控制。在NACA0015翼型和飞翼布局模型上分别对该方法进行了风洞试验验证,试验表明:基于压力反馈的等离子体流动控制方法能够实现对翼面流动分离的主动控制,通过控制能够改善模型的失速特性;在飞翼布局模型上,等离子体压力反馈控制与开环控制的效果基本一致,在来流风速为30 m/s时反馈控制与开环控制均能使模型的最大升力系数提高27%以上、失速迎角推迟4°。

     

  • 图 1  测压孔在翼型上的分布(单位:mm)

    Figure 1.  Distribution of piezometric holes on airfoils (unit:mm)

    图 2  NACA0015翼型在风洞中的安装

    Figure 2.  Installation of NACA0015 airfoil in wind tunnel

    图 3  飞翼模型在风洞中的试验照片

    Figure 3.  Experiment photo of flying-wing model in the wind tunnel

    图 4  V=20 m/s 时NACA0015翼型表面压力分布

    Figure 4.  Surface pressure distribution curve of NACA0015 airfoil at V=20 m/s

    图 5  V=30 m/s时NACA0015翼型表面压力分布曲线

    Figure 5.  Surface pressure distribution curve of NACA0015 airfoil at V=30 m/s

    图 6  升力系数和压力系数曲线

    Figure 6.  Lift coefficient and pressure coefficient curve

    图 7  闭环流动控制系统原理图

    Figure 7.  Schematic diagram of closed-loop flow control system

    图 8  压差传感器和编码器照片

    Figure 8.  Photos of differential pressure sensor and coder

    图 9  V=20 m/s特征点压力系数和等离子体激励电压随迎角增大的历程曲线

    Figure 9.  History cure of pressure coefficient of characteristic point and excitation voltage of plasma with the increase of angle of attack at V=20 m/s

    图 10  V=20 m/s特征点压力系数和等离子激励电压随迎角减小的历程曲线

    Figure 10.  History cure of pressure coefficient of characteristic point and excitation voltage of plasma with the decrease of angle of attack at V=20 m/s

    图 11  V=20 m/s,NACA0015翼型等离子体闭环流动控制测压曲线

    Figure 11.  Surface pressure distribution curve of NACA0015 airfoil with plasma closed-loop flow control at V=20 m/s

    图 12  飞翼模型上的等离子体闭环流动控制特征点

    Figure 12.  Characteristic point of plasma closed-loop flow control on the flying wing model

    图 13  V=30 m/s时飞翼模型等离子体压力反馈控制和开环控制试验曲线

    Figure 13.  Experiment curves of closed-loop flow control and open-loop flow control of plasma on flying-wing model at V=30 m/s

    表  1  天平量程和相对误差

    Table  1.   Measurement range and relative error of the balance

    测量单元天平量程相对误差/%
    升力±300 N0.09
    阻力±150 N0.22
    侧力±100 N0.30
    偏航力矩±12 N·m0.29
    滚转力矩±10 N·m0.14
    俯仰力矩±12 N·m0.11
    下载: 导出CSV
  • [1] 战培国,程娅红,赵昕. 主动流动控制技术研究[J]. 航空科学技术,2010,21(5): 2-6.

    ZHAN Peiguo,CHENG Yahong,ZHAO Xin. A review of active flow control technology[J]. Aeronautical Science and Technology,2010,21(5): 2-6. (in Chinese)
    [2] WANG Jinjun,CHOI K S,FENG Lihao,et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences,2013,62: 52-78. doi: 10.1016/j.paerosci.2013.05.003
    [3] PATEL M P,NG T T,VASUDEVAN S,et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle[J]. Journal of Aircraft,2007,44(4): 1264-1274. doi: 10.2514/1.25368
    [4] SHANG J S. Plasma injection for hypersonic blunt-body drag reduction[J]. AIAA Journal,2002,40(6): 1178-1186. doi: 10.2514/2.1769
    [5] KOZLOV A, THOMAS F. Active noise control of bluff-body flows using dielectric barrier discharge plasma actuators[R]. AIAA2009-3245, 2009.
    [6] MERCHANT C A. Active noise control using glow discharge plasma panels[D]. Cambridge, US: Massachusetts Institute of Technology, 2001.
    [7] DENNIS K, SUZEN Y, UYGUN N. Simulations of plasma flow control in low-pressure turbines[R]. AIAA 2008-543, 2008.
    [8] NESS D, CORKE T, MORRIS S. Tip clearance flow control in a linear turbine cascade using plasma actuation[R]. AIAA2009-300, 2009.
    [9] NESS D, CORKE T, MORRIS S. Turbine tip clearance flow control using plasma actuators[R]. AIAA 2006-21, 2006.
    [10] LITTLE J,TAKASHIMA K,NISHIHARA M,et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators[J]. AIAA Journal,2012,50(2): 350-365. doi: 10.2514/1.J051114
    [11] ROTH J R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma[J]. Physics of Plasmas,2003,10(5): 2117-2126. doi: 10.1063/1.1564823
    [12] ROUPASSOV D V,NIKIPELOV A A,NUDNOVA M M,et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal,2009,47(1): 168-185. doi: 10.2514/1.38113
    [13] POST M L,CORKE T C. Separation control on high angle of attack airfoil using plasma actuators[J]. AIAA Journal,2004,42(11): 2177-2184. doi: 10.2514/1.2929
    [14] PATEL M P,SOWLE Z H,CORKE T C,et al. Autonomous sensing and control of wing stall using a smart plasma slat[J]. Journal of Aircraft,2007,44(2): 516-527. doi: 10.2514/1.24057
    [15] LOPERA J,NG T T,PATEL M P,et al. Aerodynamic control of using windward-surface plasma actuators on a separation ramp[J]. Journal of Aircraft,2007,44(6): 1889-1895. doi: 10.2514/1.30741
    [16] 梁华,李应红,程邦勤,等. 等离子体气动激励抑制翼型失速分离的仿真研究[J]. 航空动力学报,2008,23(5): 777-783.

    LIANG Hua,LI Yinghong,CHENG Bangqin,et al. Numerical simulation on airfoil stall separation suppression by plasma aerodynamic actuation[J]. Journal of Aerospace Power,2008,23(5): 777-783. (in Chinese)
    [17] 张鑫,黄勇,沈志洪,等. 高风速下介质阻挡放电等离子体气动激励抑制翼-身组合体失速分离的试验研究[J]. 实验流体力学,2012,26(3): 17-20.

    ZHANG Xin,HUANG Yong,SHEN Zhihong,et al. Stall separation flow control using dielectric barrier discharge plasma over a wing-body combination at high wind speed[J]. Journal of Experiments in Fluid Mechanics,2012,26(3): 17-20. (in Chinese)
    [18] 牛中国,赵光银,梁华,等. 三角翼DBD等离子体流动控制研究进展[J]. 航空学报,2019,40(3): 022201.

    NIU Zhongguo,ZHAO Guangyin,LIANG Hua,et al. A review of vortical flow control over delta wings using DBD plasma actuation[J]. Acta Aeronautica et Astronautica Sinica,2019,40(3): 022201. (in Chinese)
    [19] NIU Zhongguo, LIU Jie, LIANG Hua, et al. Flying wing flow separation control by microsecond pulsed dielectric barrier discharge at high Reynolds number[J]. AIP Advances, 2019(12). DOI: 10.1063/1.5125847..
    [20] 牛中国,胡秋琦,梁华,等. 飞翼模型微秒脉冲等离子体控制低速风洞试验研究[J]. 推进技术,2019,40(12): 2816-2826.

    NIU Zhongguo,HU Qiuqi,LIANG Hua,et al. Study of low speed wind tunnel test using microsecond pulsed plasma actuation on flying wing model[J]. Journal of Propulsion Technology,2019,40(12): 2816-2826. (in Chinese)
    [21] 牛中国,许相辉,王建锋,等. 飞翼模型纵向气动特性等离子体流动控制试验[J]. 物理学报,2022,71(2): 12.

    NIU Zhongguo,XU Xianghui,WANG Jianfeng,et al. Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control[J]. Acta Physica Sinica,2022,71(2): 12. (in Chinese)
    [22] 牛中国,梁华,蒋甲利. 基于微秒脉冲激励的飞翼模型等离子体流动控制试验研究[J]. 工程力学,2023,40(2): 247-256.

    NIU Zhongguo,LIANG Hua,JIANG Jiali. Experimental investigation of plasma flow control on a flying wing model based on microsecond pulsed excitation[J]. Engineering Mechanics,2023,40(2): 247-256. (in Chinese)
    [23] 马杰,梁华,吴云,等. 毫秒脉冲等离子体激励改善飞翼的气动性能实验[J]. 航空动力学报,2016,31(8): 1845-1851.

    MA Jie,LIANG Hua,WU Yun,et al. Experiment for improving aerodynamic performances of a flying wing by millisecond pulsed plasma actuation[J]. Journal of Aerospace Power,2016,31(8): 1845-1851. (in Chinese)
    [24] RETHMEL C, LITTLE J, TAKASHIMA K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators[R]. AIAA2011-487, 2011.
    [25] BENARD N,MOREAU E,GRIFFIN J,et al. Slope seeking for autonomous lift improvement by plasma surface discharge[J]. Experiments in Fluids,2010,48(5): 791-808. doi: 10.1007/s00348-009-0767-6
    [26] GRUNDMANN S,TROPEA C. Experimental damping of boundary-layer oscillations using DBD plasma actuators[J]. International Journal of Heat and Fluid Flow,2009,30(3): 394-402. doi: 10.1016/j.ijheatfluidflow.2009.03.004
    [27] WU Z,WONG C W,WANG L,et al. A rapidly settled closed-loop control for airfoil aerodynamics based on plasma actuation[J]. Experiments in Fluids,2015,56(8): 158. doi: 10.1007/s00348-015-2032-5
    [28] LOMBARDI A J,BOWLES P O,CORKE T C. Closed-loop dynamic stall control using a plasma actuator[J]. AIAA Journal,2013,51(5): 1130-1141. doi: 10.2514/1.J051988
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  104
  • HTML浏览量:  44
  • PDF量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回