留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑气动阻尼的失调叶盘强迫响应分析

房明昌 王延荣

房明昌, 王延荣. 考虑气动阻尼的失调叶盘强迫响应分析[J]. 航空动力学报, 2022, 37(10):2224-2232 doi: 10.13224/j.cnki.jasp.20220266
引用本文: 房明昌, 王延荣. 考虑气动阻尼的失调叶盘强迫响应分析[J]. 航空动力学报, 2022, 37(10):2224-2232 doi: 10.13224/j.cnki.jasp.20220266
FANG Mingchang, WANG Yanrong. Forced response analysis of mistuned bladed disk with aerodynamic damping[J]. Journal of Aerospace Power, 2022, 37(10):2224-2232 doi: 10.13224/j.cnki.jasp.20220266
Citation: FANG Mingchang, WANG Yanrong. Forced response analysis of mistuned bladed disk with aerodynamic damping[J]. Journal of Aerospace Power, 2022, 37(10):2224-2232 doi: 10.13224/j.cnki.jasp.20220266

考虑气动阻尼的失调叶盘强迫响应分析

doi: 10.13224/j.cnki.jasp.20220266
基金项目: 国家科技重大专项(2017-Ⅳ-0002-0039); 国家自然科学基金(51475022)
详细信息
    作者简介:

    房明昌(1996-),男,博士生,主要从事航空发动机结构强度与振动研究。E-mail: fangmingchang@buaa.edu.cn

  • 中图分类号: V232.4

Forced response analysis of mistuned bladed disk with aerodynamic damping

  • 摘要:

    基于与影响系数法相结合的基础失调模型(FMM)分析多种人为失调在叠加随机失调前、后的强迫响应。采用有限元和计算流体力学方法分别计算得到协调叶盘的模态和气动力影响系数,构建考虑气动阻尼的基础失调模型。通过求解矩阵特征值得到失调叶盘的模态频率、振型和阻尼比,进而采用模态叠加法得到失调叶盘在行波激励下的强迫响应。结果表明:失调叶盘的强迫响应在考虑气动阻尼后明显减小。以交替失调叶盘为例,在适当范围内增大失调量可以减小强迫响应,该模型的相邻叶片频率差宜取6%,对应失调量为4.32。此外,增大间隔一个叶片的相邻叶片频率差有利于进一步减小强迫响应。

     

  • 图 1  协调叶盘模型

    Figure 1.  Tuned bladed disk model

    图 2  协调叶盘模态频率

    Figure 2.  Modal frequencies of the tuned bladed disk

    图 3  协调叶盘模态振型

    Figure 3.  Mode shapes of the tuned bladed disk

    图 4  含两种频率叶片的人为失调叶盘

    Figure 4.  Intentional mistuned bladed disks with two blade frequency types

    图 5  随机失调分布

    Figure 5.  Random mistuning distribution

    图 6  协调叶盘强迫响应

    Figure 6.  Forced response of the tuned bladed disk

    图 7  含两种频率叶片的交替失调叶盘强迫响应

    Figure 7.  Forced response of the alternating mistuned bladed disk with two blade frequency types

    图 8  含两种频率叶片的单个失调叶盘的强迫响应

    Figure 8.  Forced response of the single mistuned bladed disk with two blade frequency types

    图 9  含两种频率叶片的扇区失调叶盘强迫响应

    Figure 9.  Forced response of the sector mistuned bladed disk with two blade frequency types

    图 10  失调量为0.72的交替失调叶盘强迫响应

    Figure 10.  Forced response of the alternating mistuned bladed disk with a mistuning value of 0.72

    图 11  失调量为2.16的交替失调叶盘强迫响应

    Figure 11.  Forced response of the alternating mistuned bladed disk with a mistuning value of 2.16

    图 12  失调量为6.48的交替失调叶盘强迫响应

    Figure 12.  Forced response of the alternating mistuned bladed disk with a mistuning value of 6.48

    图 13  含3或4种频率叶片的交替失调叶盘

    Figure 13.  Alternating mistuned bladed disks with three or four blade frequency types

    图 14  含3种频率叶片的交替失调叶盘强迫响应

    Figure 14.  Forced response of the alternating mistuned bladed disk with three blade frequency types

    图 15  含4种频率叶片的交替失调叶盘强迫响应

    Figure 15.  Forced response of the alternating mistuned bladed disk with four blade frequency types

    表  1  叶片的气动力影响系数

    Table  1.   Aerodynamic influence coefficients of the blades

    叶片编号$ n $实部$ {a_r}^n $/
    (N/m)
    虚部$ {a_i}^n $/
    (N/m)
    气动力幅值/
    (N/m)
    N−4305.7329.4449.5
    N−3−56.1−2710.82711.4
    N−21587.2−553.91681.1
    N−196068.987834.8130169.9
    012764.0−314417.7314676.7
    130406.2190507.5192918.8
    2−16868.016008.823255.3
    3−3644.76388.27354.8
    4557.7−258.7614.8
    下载: 导出CSV

    表  2  含两种频率叶片的人为失调叶盘分布特征参数

    Table  2.   Distribution characteristic parameters of intentional mistuned bladed disk with two blade frequency types

    叶盘类型失调量$ \delta $频率邻差$\,{\beta _0}$频率间
    一邻差$\,{\beta _1}$
    频率间
    二邻差$\,{\beta _2}$
    交替失调4.325.891.635.66
    单个失调1.161.631.631.63
    扇区失调4.161.632.312.83
    下载: 导出CSV

    表  3  含两种频率叶片的人为失调叶盘强迫响应最大值

    Table  3.   Maximum forced response of the intentional mistuned bladed disks with two blade frequency types

    叶盘类型强迫响应/10−5叠加随机失调的
    强迫响应/10−5
    协调1.853.99
    交替失调0.771.91
    单个失调2.774.55
    扇区失调1.872.54
    下载: 导出CSV

    表  4  不同失调量的交替失调叶盘强迫响应最大值

    Table  4.   Maximum forced response of the alternating mistuned bladed disks with different mistuning value

    失调量强迫响应/10−5叠加随机失调的
    强迫响应/10−5
    01.853.99
    0.721.813.68
    2.161.213.29
    4.320.771.91
    6.480.731.55
    下载: 导出CSV

    表  5  不同种数的频率叶片的交替失调叶盘分布特征参数

    Table  5.   Distribution parameters of the alternating mistuned bladed disk with different number of blade frequency types

    叶盘类型失调量$ \delta $频率邻差$\,{\beta _0}$频率间
    一邻差$\,{\beta _1}$
    频率间
    二邻差$\,{\beta _2}$
    交替失调
    (两种频率叶片)
    4.325.891.635.66
    交替失调
    (3种频率叶片)
    3.874.244.240.00
    交替失调
    (4种频率叶片)
    3.813.403.893.27
    下载: 导出CSV

    表  6  不同种数频率叶片的交替失调叶盘强迫响应最大值

    Table  6.   Maximum forced response of the alternating mistuned bladed disks with different number of blade frequency types

    叶盘类型强迫响应/10−5叠加随机失调的
    强迫响应/10−5
    交替失调
    (两种频率叶片)
    0.771.91
    交替失调
    (3种频率叶片)
    0.441.53
    交替失调
    (4种频率叶片)
    0.891.69
    下载: 导出CSV
  • [1] 白斌,白广忱,童晓晨,等. 整体叶盘结构失谐振动的国内外研究状况[J]. 航空动力学报,2014,29(1): 91-103. doi: 10.13224/j.cnki.jasp.2014.01.012

    BAI Bin,BAI Guangchen,TONG Xiaochen,et al. Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad[J]. Journal of Aerospace Power,2014,29(1): 91-103. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.01.012
    [2] WHITEHEAD D S. Effect of mistuning on the vibration of turbomachinery blades induced by wake[J]. Journal of Mechanical Engineering Science,1966,8(1): 15-21. doi: 10.1243/JMES_JOUR_1966_008_004_02
    [3] GRIFFIN J H,HOOSAC T M. Model development and statistical investigation of turbine blade mistuning[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design,1984,106(2): 204-210. doi: 10.1115/1.3269170
    [4] CASTANIER M P,PIERRE C. Investigation of the combined effects of intentional and random mistuning on the forced response of bladed disks[R]. Cleveland,US: the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,1998.
    [5] CASTANIER M P,PIERRE C. Using intentional mistuning in the design of turbomachinery rotors[J]. AIAA Journal,2002,40(10): 2077-2086. doi: 10.2514/2.1542
    [6] 郑赟,王静. 错频对叶片的气动弹性稳定性影响[J]. 航空动力学报,2013,28(5): 1029-1036. doi: 10.13224/j.cnki.jasp.2013.05.012

    ZHENH Yun,WANG Jing. Influence of frequency mistuning on aeroelastic stability of blade[J]. Journal of Aerospace Power,2013,28(5): 1029-1036. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.05.012
    [7] FEINER D M,GRIFFIN J H. A Fundamental model of mistuning for a single family of modes[J]. Journal of Turbomachinery,2002,124(10): 597-605.
    [8] FEINER D M,GRIFFIN J H. Mistuning identification of bladed disk using a fundamental mistuning model: Part Ⅰ theory[J]. Journal of Turbomachinery,2004,126(1): 150-158. doi: 10.1115/1.1643913
    [9] FEINER D M,GRIFFIN J H. Mistuning identification of bladed disk using a fundamental mistuning model: Part Ⅱ application[J]. Journal of Turbomachinery,2004,126(1): 159-165. doi: 10.1115/1.1643914
    [10] WANG Y R,FU Z Z,JIANG X H,et al. A. Mistuning effects on aero-elastic stability of axial compressor rotor blades[J]. Journal of Engineering for Gas Turbines and Power,2015,137(10): 102504.1-102504.12.
    [11] FU Z Z,WANG Y R. Mistuning and structural coupling effects on flutter of turbomachinery blades[R]. Zhuhai,Guangdong:International Conference on Structural Engineering,Vibration and Aerospace Engineering,2013.
    [12] CRAWLEY E F,HALL K C. Optimization and mechanisms of mistuning in cascades[J]. Journal of Engineering for Gas Turbines and Power,1985,107(2): 418-426. doi: 10.1115/1.3239742
    [13] CASTANIER M P,PIERRE C. Modeling and analysis of mistuned bladed disk vibration: status and emerging directions[J]. Journal of Propulsion and Power,2006,22(3): 384-396.
    [14] YANG M T,GRIFFIN J H. A reduced-order model of mistuning using a subset of nominal system modes[J]. Journal of Engineering for Gas Turbines and Power,2001,123(10): 893-900.
    [15] BEIROW B,KÜHHORN A,FIGASCHEWSKY F,et al. Forced response reduction of a bladed disk by means of intentional mistuning[J]. Journal of Engineering for Gas Turbines and Power,2002,124(7): 586-597.
    [16] KÜHHORN A,FIGASCHEWSKY F,BEIROW B,et al. Design and analysis of an intentional mistuning experiment reducing flutter susceptibility and minimizing forced response of a jet engine fan[R]. Charlotte,Canada:ASME Turbo Expo:Turbomachinery Technical Conference and Exposition,2017.
    [17] BEIROW B,KÜHHORN A,FIGASCHEWSKY F,et al. Vibration analysis of a mistuned axial turbine bladed disk[R]. Phoenix,US:ASME Turbo Expo:Turbomachinery Technical Conference and Exposition,2019.
    [18] MARTEL C,CORRAL R. Asymptotic description of maximum mistuning amplification of bladed disk forced response[J]. Journal of Engineering for Gas Turbines and Power,2009,131(2): 435-446.
    [19] MARTEL C,JOSÉ J. Intentional mistuning effect in the forced response of rotors with aerodynamic damping[J]. Journal of Sound and Vibration,2018,433(27): 212-229.
    [20] FANG M C,WANG Y R. Intentional mistuning effect on the blisk vibration with aerodynamic damping[J]. AIAA Journal,2022,60(6): 3884-3893. doi: 10.2514/1.J060797
    [21] HANAMURA Y,TANAKA H,YAMAGUCHI K. A simplified method to measure unsteady force acting on the vibrating blades in cascade[J]. Bulletin of Japan Society of Mechanical Engineers,1980,23(180): 880-887. doi: 10.1299/jsme1958.23.880
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  109
  • HTML浏览量:  56
  • PDF量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回