留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整体叶盘解谐振动测试、失谐辨识与模型确认

赵景超 周标 陈伟

赵景超, 周标, 陈伟. 整体叶盘解谐振动测试、失谐辨识与模型确认[J]. 航空动力学报, 2024, 39(3):20220267 doi: 10.13224/j.cnki.jasp.20220267
引用本文: 赵景超, 周标, 陈伟. 整体叶盘解谐振动测试、失谐辨识与模型确认[J]. 航空动力学报, 2024, 39(3):20220267 doi: 10.13224/j.cnki.jasp.20220267
ZHAO Jingchao, ZHOU Biao, CHEN Wei. Blade detuning test, mistuning identification and model verification of blisk[J]. Journal of Aerospace Power, 2024, 39(3):20220267 doi: 10.13224/j.cnki.jasp.20220267
Citation: ZHAO Jingchao, ZHOU Biao, CHEN Wei. Blade detuning test, mistuning identification and model verification of blisk[J]. Journal of Aerospace Power, 2024, 39(3):20220267 doi: 10.13224/j.cnki.jasp.20220267

整体叶盘解谐振动测试、失谐辨识与模型确认

doi: 10.13224/j.cnki.jasp.20220267
基金项目: 国家自然科学基金(52175098); 欧盟地平线2020研究与创新项目玛丽∙居里学者项目(891197)
详细信息
    作者简介:

    赵景超(1997-),男,硕士生,主要从事结构动力学研究。E-mail:jc.zhao@nuaa.edu.cn

    通讯作者:

    周标(1985-),男,副教授,博士,主要从事结构动力学研究。E-mail:biao.zhou@nuaa.edu.cn

  • 中图分类号: V231.92

Blade detuning test, mistuning identification and model verification of blisk

  • 摘要:

    开展了基于叶片解谐振动测试的整体叶盘失谐辨识和模型确认研究。对整体叶盘开展叶片解谐振动测试,提出一种解谐质量布置方案准则,获取整体叶盘所有“单个”叶片振动频率的差异化分布;引入一种失谐辨识方法,消除由于叶片解谐质量所带来的残余叶间振动耦合效应的影响,获取更为准确的叶片失谐分布辨识结果;重点探究不同解谐质量及位置对整体叶盘叶片解谐振动测试和失谐辨识结果的影响,并建立失谐整体叶盘有限元模型;开展基于常规模态测试的失谐整体叶盘模型确认研究,整体叶盘固有频率和振型的仿真/测试结果一致性良好,大多数模态的频差低于0.3%。结果表明该失谐辨识方法能够提高通过叶片解谐振动测试直接获取的叶片失谐分布的准确性,在此基础上建立的失谐整体叶盘有限元模型能够有效反映实际整体叶盘结构的固有振动特性。

     

  • 图 1  整体叶盘试验件

    Figure 1.  Blisk experiment piece

    图 2  固有频率-节径图

    Figure 2.  Natural frequency-nodal diameter diagram

    图 3  叶片模态动能分布

    Figure 3.  Modal kinetic energy distribution of blade

    图 4  叶片解谐振动测试

    Figure 4.  Blade detuning vibration test

    图 5  1号叶片测试频响函数对比

    Figure 5.  Comparison of test FRFs of No.1 blade

    图 6  所有叶片解谐振动测试频响函数

    Figure 6.  Collection of all blades detuning test FRFs

    图 7  $M_{{\rm{d}}}^{}$ = 11.4 g,叶片一弯模态频率失谐辨识结果

    Figure 7.  $M_{{\rm{d}}}^{}$ = 11.4 g, blade frequency mistuning identification results for 1B (bending) mode

    图 8  $ M_{{\rm{d}}}^{} $ = 11.4 g,叶片一扭模态频率失谐辨识结果

    Figure 8.  $ M_{{\rm{d}}}^{} $ = 11.4 g, blade frequency mistuning identification results for 1T (torsional) mode

    图 9  不同解谐质量及其位置

    Figure 9.  Different detuning masses and positions

    图 10  叶片一弯模态频率失谐辨识结果

    Figure 10.  Frequency mistuning identification results: 1B (bending) mode

    图 11  叶片一扭模态频率失谐辨识结果

    Figure 11.  Frequency mistuning identification results: 1T (torsional) mode

    图 12  叶片一弯模态频率失谐辨识结果的验证

    Figure 12.  Verification of frequency mistuning identification results for 1B (bending) mode

    图 13  叶片一扭模态频率失谐辨识结果的验证

    Figure 13.  Verification of frequency mistuning identification results for 1T (torsional) mode

    图 14  整体叶盘的模态测试

    Figure 14.  Modal test of blisk

    图 15  仿真和测试模态频率比对

    Figure 15.  Comparison of simulation and test modal frequencies

    图 16  整体叶盘仿真和测试模态振型比对

    Figure 16.  Comparison of simulation and test modal vibration shapes of blisk

    表  1  不同测试方案的解谐质量及尺寸

    Table  1.   Detuning mass and size in different test cases

    测试方案编号解谐质量数值/g底面直径/mm
    19.220
    211.410
    31910
    下载: 导出CSV
  • [1] 白斌,白广忱,童晓晨,等. 整体叶盘结构失谐振动的国内外研究状况[J]. 航空动力学报,2014,29(1): 91-103.

    BAI Bin,BAI Guangchen,TONG Xiaochen,et al. Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad[J]. Journal of Aerospace Power,2014,29(1): 91-103. (in Chinese)
    [2] 姚建尧,高阳,王建军. 航空发动机失谐叶盘动态特性研究进展[J]. 航空制造技术,2016,59(21): 76-85,92.

    YAO Jianyao,GAO Yang,WANG Jianjun. A review of dynamic characteristics of mistuned bladed disks[J]. Aeronautical Manufacturing Technology,2016,59(21): 76-85,92. (in Chinese)
    [3] 臧朝平,兰海强. 失谐叶盘结构振动问题研究新进展[J]. 航空工程进展,2011,2(2): 133-142.

    ZANG Chaoping,LAN Haiqiang. Advances in research vibration problem of mistuned blisk assemblies[J]. Advances in Aeronautical Science and Engineering,2011,2(2): 133-142. (in Chinese)
    [4] 邵帅,周柏卓,王相平. 失谐叶盘结构振动模态局部化研究[J]. 航空发动机,2014,40(3): 56-59.

    SHAO Shuai,ZHOU Baizhuo,WANG Xiangping. Investigation of vibration mode localization of mistuned bladed-disk assemblies[J]. Aeroengine,2014,40(3): 56-59. (in Chinese)
    [5] YUAN J,SCARPA F,ALLEGRI G,et al. Efficient computational techniques for mistuning analysis of bladed discs: a review[J]. Mechanical Systems and Signal Processing,2017,87: 71-90.
    [6] KLAUKE T,KÜHHORN A,BEIROW B,et al. Numerical investigations of localized vibrations of mistuned blade integrated disks (blisks)[J]. Journal of Turbomachinery,2009,131(3): 031002.1-031002.11.
    [7] 王帅,王建军,李其汉. 一种基于响应信息的整体叶盘结构失谐识别方法[J]. 航空学报,2009,30(10): 1863-1870.

    WANG Shuai,WANG Jianjun,LI Qihan. Mistuning identification for integrally bladed disk from measured response information[J]. Acta Aeronautica et Astronautica Sinica,2009,30(10): 1863-1870. (in Chinese)
    [8] 王帅,王建军,李其汉. 一种基于模态减缩技术的整体叶盘结构失谐识别方法[J]. 航空动力学报,2009,24(3): 662-669.

    WANG Shuai,WANG Jianjun,LI Qihan. Mistuning identification of integrally bladed disk based on the modal reduced technique[J]. Journal of Aerospace Power,2009,24(3): 662-669. (in Chinese)
    [9] BECK J A,BROWN J M,GILLAUGH D L,et al. Integrally bladed rotor mistuning identification and model updating using geometric mistuning models[J]. Journal of Engineering for Gas Turbines and Power,2021,143(12): 121012.1-121012.11.
    [10] LAXALDE D, THOUVEREZ F, SINOU J J, et al. Mistuning identification and model updating of an industrial blisk[C]//Proceedings of the 51st ASME Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2006: 855-864.
    [11] FEINER D M,GRIFFIN J H. Mistuning identification of bladed disks using a fundamental mistuning model: Part II application[J]. Journal of Turbomachinery,2004,126(1): 159-165. doi: 10.1115/1.1643914
    [12] CHAN Y J,EWINS D J. Prediction of vibration response levels of mistuned integral bladed disks (blisks): robustness studies[J]. Journal of Turbomachinery,2012,134(4): 044501.1-044501.7.
    [13] NYSSEN F,GOLINVAL J C. Identification of mistuning and model updating of an academic blisk based on geometry and vibration measurements[J]. Mechanical Systems and Signal Processing,2016,68/69: 252-264. doi: 10.1016/j.ymssp.2015.08.006
    [14] WEBER R,KÜHHORN A. Mistuning identification approach with focus on high-speed centrifugal compressors[J]. Journal of Engineering for Gas Turbines and Power,2019,141(3): 032507.1-032507.7.
    [15] JUDGE J A,PIERRE C,CECCIO S L. Experimental mistuning identification in bladed disks using a component-mode-based reduced-order model[J]. AIAA Journal,2009,47(5): 1277-1287. doi: 10.2514/1.41214
    [16] GILLAUGH D L,KASZYNSKI A A,BROWN J M,et al. Mistuning evaluation comparison via as-manufactured models, traveling wave excitation, and compressor rigs[J]. Journal of Engineering for Gas Turbines and Power,2019,141(6): 061006.1-061006.17.
    [17] HOLLKAMP J J,GORDON R W. Modal test experiences with a jet engine fan model[J]. Journal of Sound and Vibration,2001,248(1): 151-165. doi: 10.1006/jsvi.2001.3758
    [18] BEIROW B,KÜHHORN A,FIGASCHEWSKY F,et al. Model update and validation of a mistuned high-pressure compressor blisk[J]. The Aeronautical Journal,2019,123(1260): 230-247. doi: 10.1017/aer.2018.149
    [19] KUEHHORN A, BEIROW B. Method for determining blade mistuning on integrally manufactured rotor wheels: US8024137[P]. 2011-09-20.
    [20] BEIROW B, KUEHHORN A, NIPKAU J. An equivalent blisk model considering the influence of the air flow on blade vibrations of a mistuned compressor blisk[C]//Proceedings of the 10th Biennial International Conference on Vibration Problems, 2011: 549-555.
    [21] STREHLAU U, KU¨HHORN A. Experimental and numerical investigations of HPC blisks with a focus on travelling waves[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 865-877.
    [22] BEIROW B,GIERSCH T,KÜHHORN A,et al. Optimization-aided forced response analysis of a mistuned compressor blisk[J]. Journal of Engineering for Gas Turbines and Power,2015,137(1): 012504.1-012504.10.
    [23] LUPINI A,SHIM J,CALLAN S,et al. Mistuning identification technique based on blisk detuning[J]. AIAA Journal,2021,59(8): 3087-3095.
    [24] ZHOU Biao,ZHAO Jingchao,BERRUTI T M. Exploration of blade detuning tests for mistuning identification of blisks[J]. Mechanical Systems and Signal Processing,2022,175: 109118.1-109118.12.
    [25] AVALOS J,MIGNOLET M P. On damping entire bladed disks through dampers on only a few blades[J]. Journal of Engineering for Gas Turbines and Power,2010,132(9): 092503.1-092503.6.
    [26] 徐昆鹏,范云飞,孙伟. 基于基础失谐减缩模型的涂层整体叶盘失谐辨识[J]. 噪声与振动控制,2018,38(增刊2): 457-461. doi: 10.3969/j.issn.1006-1355.2018.Z1.098

    XU Kunpeng,FAN Yunfei,SUN Wei. Mistuning identification of coated blisks based on the fundamental mistuning contracted model[J]. Noise and Vibration Control,2018,38(Suppl.2): 457-461. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.Z1.098
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  98
  • HTML浏览量:  50
  • PDF量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 网络出版日期:  2023-09-27

目录

    /

    返回文章
    返回