留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超飞行器喷流干扰流场非平衡效应影响分析

傅杨奥骁 高铁锁 丁明松 刘庆宗 江涛 董维中

傅杨奥骁, 高铁锁, 丁明松, 等. 高超飞行器喷流干扰流场非平衡效应影响分析[J]. 航空动力学报, 2024, 39(3):20220268 doi: 10.13224/j.cnki.jasp.20220268
引用本文: 傅杨奥骁, 高铁锁, 丁明松, 等. 高超飞行器喷流干扰流场非平衡效应影响分析[J]. 航空动力学报, 2024, 39(3):20220268 doi: 10.13224/j.cnki.jasp.20220268
FU Yang’aoxiao, GAO Tiesuo, DING Mingsong, et al. Analysis of non-equilibrium effect in hypersonic vehicle’s jet interaction flow field[J]. Journal of Aerospace Power, 2024, 39(3):20220268 doi: 10.13224/j.cnki.jasp.20220268
Citation: FU Yang’aoxiao, GAO Tiesuo, DING Mingsong, et al. Analysis of non-equilibrium effect in hypersonic vehicle’s jet interaction flow field[J]. Journal of Aerospace Power, 2024, 39(3):20220268 doi: 10.13224/j.cnki.jasp.20220268

高超飞行器喷流干扰流场非平衡效应影响分析

doi: 10.13224/j.cnki.jasp.20220268
基金项目: 基础加强计划重点基础研究项目(2019-JCJQ-ZD-047); 国家重点研发计划项目(2019YFA0405203)
详细信息
    作者简介:

    傅杨奥骁(1994-),男,博士生,主要从事高温气体动力学等方面的研究。E-mail:fyax123@163.com

    通讯作者:

    董维中(1966-),男,研究员,博士,主要从事高温气体动力学等方面的研究。E-mail:dongwz1966@163.com

  • 中图分类号: V211.751

Analysis of non-equilibrium effect in hypersonic vehicle’s jet interaction flow field

  • 摘要:

    针对高超声速飞行器绕流与反作用控制系统(RCS)喷流相互干扰过程中高温气体非平衡效应的影响问题,基于高温空气及喷流燃气物理化学模型,通过数值求解三维非平衡雷诺平均Navier-Stokes(RANS)方程,开展了典型外形喷流干扰非平衡流场的数值模拟,研究了绕流空气非平衡效应、喷流燃气非平衡效应及其综合的流场高温非平衡效应的影响,分析了不同飞行条件下流场高温气体非平衡效应对流场结构及飞行器气动力热特性影响的变化规律。研究表明:绕流空气非平衡效应在高马赫数下影响显著,表现为减小喷流附加推力、降低干扰区热流峰值,随着马赫数升高,其影响逐渐增大;喷流燃气非平衡效应在不同状态下的影响存在差别,在低空状态下,燃气组分主要发生复燃/复合反应,导致喷流附加推力增大、干扰区热流峰值升高,在高空状态下,燃气组分主要发生离解反应,导致喷流附加推力减小、干扰区热流峰值降低,沿弹道高度升高,喷流燃气的复合反应减弱而离解反应增强;为了更加真实地模拟高超声速飞行器RCS喷流干扰流场特性,有必要全面地考虑流场中的高温气体非平衡效应。

     

  • 图 1  气体模型及研究思路

    Figure 1.  Gas model and research plan

    图 2  试验模型外形(单位:mm)

    Figure 2.  Configuration of test model (unit: mm)

    图 3  模型表面压力计算与文献和试验结果对比(α=20°)

    Figure 3.  Comparison of surface pressure distribution between present CFD result and reference experiment result (α=20°)

    图 4  计算网格示意图

    Figure 4.  Schematic diagram of computation grid

    图 5  不同网格得到的热流分布对比

    Figure 5.  Comparison of heat flux distribution by different grids

    图 6  驻点线上组分质量分数对比

    Figure 6.  Comparison of species mass fraction at stagnation line

    图 7  飞行器轴向力系数对比(无喷状态)

    Figure 7.  Comparison of axial force coefficient (jet-off)

    图 8  组分质量分数分布云图(H=60 km)

    Figure 8.  Contour of specie mass fraction (H=60 km)

    图 9  绕流空气非平衡效应对激波结构的影响(α=0°)

    Figure 9.  Influence of air nonequilibrium effect on shock structure (α=0°)

    图 10  绕流空气非平衡效应对表面压力分布的影响

    Figure 10.  Influence of air nonequilibrium effect on surface pressure distribution

    图 11  绕流空气非平衡效应对表面热流分布的影响

    Figure 11.  Influence of air nonequilibrium effect on surface heat flux distribution

    图 12  绕流空气非平衡效应对推力放大因子的影响

    Figure 12.  Influence of air nonequilibrium effect on thrust amplification factor

    图 13  绕流空气非平衡效应对干扰区热流峰值的影响

    Figure 13.  Influence of air nonequilibrium effect on surface maximum heat flux value

    图 14  上表面对称线上的组分质量分数分布对比

    Figure 14.  Comparison of species mass fraction distribution along upper side symmetric line

    图 15  燃气非平衡效应对激波结构的影响(α=0°)

    Figure 15.  Influence of jet gas’s nonequilibrium effect on shock structure (α=0°)

    图 16  流场温度分布云图对比

    Figure 16.  Comparison of flow field temperature distribution contour

    图 17  喷流燃气非平衡效应对表面压力分布的影响

    Figure 17.  Influence of jet gas nonequilibrium effect on surface pressure distribution

    图 18  喷流燃气非平衡效应对表面热流分布的影响

    Figure 18.  Influence of jet gas nonequilibrium effect on surface heat flux distribution

    图 19  喷流燃气非平衡效应对推力放大因子对比的影响

    Figure 19.  Influence of jet gas nonequilibrium effect on thrust amplification factor

    图 20  喷流燃气非平衡效应对干扰区热流峰值的影响

    Figure 20.  Influence of jet gas nonequilibrium effect on surface maximum heat flux value

    图 21  流场高温非平衡效应对推力放大因子的影响

    Figure 21.  Influence of flow field high temperature nonequilibrium effect on thrust amplification factor

    图 22  流场高温非平衡效应对干扰区热流峰值的影响

    Figure 22.  Influence of flow field high temperature nonequilibrium effect on surface maximum heat flux value

    表  1  高温空气化学反应模型

    Table  1.   Chemical reaction model of air

    编号反应式 编号反应式
    1N2+M1 ↔N+N+M1 4O+NO ↔N+O2
    2O2+M2 ↔O+O+M25O+N2 ↔N+NO
    3NO+M3 ↔N+O+M36N+O ↔NO++e
    下载: 导出CSV

    表  2  喷流燃气组分化学反应模型

    Table  2.   Chemical reaction model of jet gas components

    编号反应式 编号反应式
    1CO2+M4 ↔CO+O+M4 7OH+CO ↔CO2+H
    2CO2+O ↔ O2+CO8OH+H2 ↔H2O+H
    3CO+NO ↔ CO2+N9H+O2 ↔OH+O
    4H2O+M5 ↔H+OH+M510O+H2 ↔OH+H
    5H2+M6 ↔H+H+M611OH+OH ↔H2O+O
    6OH+M7 ↔O+H+M7
    下载: 导出CSV

    表  3  推力放大因子对比

    Table  3.   Comparison of thrust amplification factor

    攻角/(°)推力放大因子误差/%
    试验CFD
    01.3671.3720.37
    201.4381.4240.97
    401.3751.3313.2
    下载: 导出CSV

    表  4  不同网格计算得到的气动力系数对比

    Table  4.   Comparison of aerodynamic characteristics computed by different grids

    参数稀网格中等加密网格密网格
    Ca 0.1478 0.1480 0.1479
    Cn−0.0158−0.0159−0.0159
    Cmz−0.0175−0.0176−0.0176
    下载: 导出CSV

    表  5  计算状态

    Table  5.   Computation conditions

    编号H/kmMaα/(°)
    12050
    23080
    340100
    450150
    560200
    670250
    下载: 导出CSV

    表  6  来流空气非平衡效应引起的气动力特性变化

    Table  6.   Variation of aerodynamic characteristics caused by inflow air’s non-equilibrium effect

    参数空气非平衡流模型完全气体异质流模型
    Ca0.14640.1428
    Cn−0.0818−0.1180
    Cmz−0.0101−0.0155
    K1.01461.0211
    ${F_{ {\text{n} },{\rm{ji} } } }$/N−99.55−143.60
    ${M}_{{\rm{ji}}}$/(N·m)−12.29−18.87
    下载: 导出CSV

    表  7  喷流燃气非平衡效应引起的气动力特性变化

    Table  7.   Variation of aerodynamic characteristics caused by jet gas’s non-equilibrium effect

    参数H=60 kmH=20 km
    燃气/空气混合反应流燃气冻结流燃气/空气混合反应流燃气冻结流
    Ca0.14600.14640.14800.1482
    Cn−0.0692−0.0810−0.0159−0.0047
    Cmz−0.0071−0.0104−0.0176−0.0226
    K1.01241.01451.04481.0132
    ${F_{{\rm{n}},{\rm{ji} } } }$/N−84.26−98.54−304.61−89.80
    ${M_{{\rm{ji}}} }$/(N·m)−8.60−12.70−337.70−433.89
    下载: 导出CSV
  • [1] 李素循. 近空间飞行器的气动复合控制原理及研究进展[J]. 力学进展,2009,39(6): 740-755. doi: 10.3321/j.issn:1000-0992.2009.06.012

    LI Suxun. Progress in aerodynamics of combination control for vehicles at high speed[J]. Advances in Mechanics,2009,39(6): 740-755. (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.06.012
    [2] 许晨豪,蒋崇文,高振勋,等. 高超声速飞行器反作用控制系统喷流干扰综述[J]. 力学与实践,2014,36(2): 147-155, 160. doi: 10.6052/1000-0879-13-376

    XU Chenhao,JIANG Chongwen,GAO Zhenxun,et al. The jet interaction effects of reaction control systems in hypersonic vehicles[J]. Mechanics in Engineering,2014,36(2): 147-155, 160. (in Chinese) doi: 10.6052/1000-0879-13-376
    [3] 杨磊,叶正寅. 超声速飞行器侧向喷流干扰流场传统数值模拟方法的误差分析[J]. 航空动力学报,2015,30(10): 2508-2515.

    YANG Lei,YE Zhengyin. Error analysis of lateral jet interaction flow field of supersonic vehicle with traditional numerical method[J]. Journal of Aerospace Power,2015,30(10): 2508-2515. (in Chinese)
    [4] 赵法明,王江峰. 带舵旋成体侧向喷流流场特性分析[J]. 航空动力学报,2016,31(3): 726-732. doi: 10.13224/j.cnki.jasp.2016.03.025

    ZHAO Faming,WANG Jiangfeng. Analysis on flow field characteristics of lateral jet on slender body[J]. Journal of Aerospace Power,2016,31(3): 726-732. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.03.025
    [5] 金亮,谢攀,黄伟,等. 高超声速再入飞行器的多孔流动控制[J]. 航空动力学报,2018,33(3): 696-702. doi: 10.13224/j.cnki.jasp.2018.03.023

    JIN Liang,XIE Pan,HUANG Wei,et al. Flow control of hypersonic reentry vehicle based on multi-jets interaction[J]. Journal of Aerospace Power,2018,33(3): 696-702. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.03.023
    [6] 高铁锁,董维中,江涛,等. 再入等离子体流动及其电磁波传输效应研究[J]. 宇航学报,2017,38(8): 879-885. doi: 10.3873/j.issn.1000-1328.2017.08.013

    GAO Tiesuo,DONG Weizhong,JIANG Tao,et al. Research on reentry plasma flow and its effects on electromagnetic wave transmission[J]. Journal of Astronautics,2017,38(8): 879-885. (in Chinese) doi: 10.3873/j.issn.1000-1328.2017.08.013
    [7] 董维中,高铁锁,丁明松,等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报,2015,36(1): 311-324.

    DONG Weizhong,GAO Tiesuo,DING Mingsong,et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica,2015,36(1): 311-324. (in Chinese)
    [8] 包醒东,余西龙,毛宏霞,等. 火箭发动机出口参数对喷焰流动及辐射的影响[J]. 航空动力学报,2019,34(11): 2448-2457. doi: 10.13224/j.cnki.jasp.2019.11.017

    BAO Xingdong,YU Xilong,MAO Hongxia,et al. Influence of rocket engine exit parameters on flow and radiation characteristics of exhaust plume[J]. Journal of Aerospace Power,2019,34(11): 2448-2457. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.11.017
    [9] 吴睿,聂万胜,蔡红华,等. UDMH/NTO火箭发动机尾焰流场特性数值仿真[J]. 航空动力学报,2018,33(4): 952-960. doi: 10.13224/j.cnki.jasp.2018.04.022

    WU Rui,NIE Wansheng,CAI Honghua,et al. Numerical simulation of flow field characteristics of UDMH/NTO rocket engine plume[J]. Journal of Aerospace Power,2018,33(4): 952-960. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.04.022
    [10] SHINGO M, HIROKI T, KAZUHISA F. Hot jet and Mach number effect on jet interaction upstream separation[R]. AIAA-2013-2977, 2013.
    [11] 赵弘睿,龚安龙,刘周,等. 高空侧向喷流干扰效应数值研究[J]. 空气动力学学报,2020,38(5): 996-1003. doi: 10.7638/kqdlxxb-2020.0017

    ZHAO Hongrui,GONG Anlong,LIU Zhou,et al. Numerical study of lateral jet interaction at high altitude[J]. Acta Aerodynamica Sinica,2020,38(5): 996-1003. (in Chinese) doi: 10.7638/kqdlxxb-2020.0017
    [12] 贺旭照,秦思,曾学军,等. 模拟飞行条件下的吸气式高超声速飞行器后体尾喷流干扰问题实验方案研究[J]. 推进技术,2014,35(10): 1310-1316. doi: 10.13675/j.cnki.tjjs.2014.10.003

    HE Xuzhao,QIN Si,ZENG Xuejun,et al. Experiment scheme research on afterbody nozzle plume interference of air-breathing hypersonic vehicle fly condition[J]. Journal of Propulsion Technology,2014,35(10): 1310-1316. (in Chinese) doi: 10.13675/j.cnki.tjjs.2014.10.003
    [13] 赖江,赵忠良,李玉平,等. 导弹模型后体横向喷流干扰特性[J]. 航空动力学报,2019,34(2): 469-478.

    LAI Jiang,ZHAO Zhongliang,LI Yuping,et al. Transverse jet interaction characteristics on rear section of missile model[J]. Journal of Aerospace Power,2019,34(2): 469-478. (in Chinese)
    [14] VOTTA R, TRIFONI E, PEZZELLA G, et al. Numerical investigation of RCS jet interaction and plume impingement for Mars precision landing[R]. AIAA-2017-3350, 2017.
    [15] DESPIRITO J. Effects of turbulence model on prediction of hot-gas lateral jet interaction in a supersonic crossflow[R]. AIAA-2015-1923, 2015.
    [16] ZHAO Faming. Air chemical non-equilibrium effects on the hypersonic combustion flow of RCS with gaseous ethylene fuel[J]. Advances in Applied Mathematics and Mechanics,2019,10(5): 1261-1278.
    [17] DONG Haibo,LIU Jun,CHEN Zedong,et al. Numerical investigation of lateral jet with supersonic reacting flow[J]. Journal of Spacecraft and Rockets,2018,55(4): 928-935. doi: 10.2514/1.A34096
    [18] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996.

    DONG Weizhong. Numerical calculation and analysis of the influence of thermochemical non-equilibrium effect on hypersonic flow[D]. Beijing: Beijing University of Aeronautics and Astronautics, 1996. (in Chinese)
    [19] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 四川 绵阳: 中国空气动力研究与发展中心, 2005.

    ZHAO Huiyong. Parallel numerical study of whole scramjet engine[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2005. (in Chinese)
    [20] 秦思,贺旭照,曾学军,等. 喷流落压比对高超飞行器尾喷管内外流干扰的实验[J]. 航空动力学报,2017,32(10): 2491-2497. doi: 10.13224/j.cnki.jasp.2017.10.023

    QIN Si,HE Xuzhao,ZENG Xuejun,et al. Experiment of influence of the nozzle pressure ratio on the interaction between the external flow and nozzle flow of hypersonic aerocraft[J]. Journal of Aerospace Power,2017,32(10): 2491-2497. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.10.023
    [21] 丁明松,董维中,高铁锁,等. 局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报,2018,39(3): 121588.

    DING Mingsong,DONG Weizhong,GAO Tiesuo,et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica,2018,39(3): 121588. (in Chinese)
    [22] 丁明松,江涛,董维中,等. 三维等离子体MHD气动热环境数值模拟[J]. 航空学报,2017,38(8): 121030.

    DING Mingsong,JIANG Tao,DONG Weizhong,et al. Numerical simulation of 3D plasma MHD aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica,2017,38(8): 121030. (in Chinese)
    [23] 傅杨奥骁,刘庆宗,丁明松,等. 热喷干扰气体模型对飞行器气动特性影响分析[J]. 力学学报,2022,54(5): 1229-1241.

    FU Yangaoxiao,LIU Qingzong,DING mingsong,et al. Analysis of gas model’s influence on aerodynamic characteristics for hypersonic vehicle over hot jet interaction flow field[J]. Chinese Journal of Theoretical and Applied Mechanics,2022,54(5): 1229-1241. (in Chinese)
    [24] NAKAMURA T, KANEKO M, MEN’SHOV I, et al. Numerical simulation on aerodynamic interaction between a side jet and flow around a blunt body in hypersonic flow[R]. AIAA-2003-1135, 2003.
  • 加载中
图(22) / 表(7)
计量
  • 文章访问数:  124
  • HTML浏览量:  53
  • PDF量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回