留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚/超临界多相煤油喷嘴流量特性

朱珈驹 惠鑫 刘桂桂 薛鑫 杨越 黎家驹

朱珈驹, 惠鑫, 刘桂桂, 等. 亚/超临界多相煤油喷嘴流量特性[J]. 航空动力学报, 2022, 37(10):2324-2334 doi: 10.13224/j.cnki.jasp.20220271
引用本文: 朱珈驹, 惠鑫, 刘桂桂, 等. 亚/超临界多相煤油喷嘴流量特性[J]. 航空动力学报, 2022, 37(10):2324-2334 doi: 10.13224/j.cnki.jasp.20220271
ZHU Jiaju, HUI Xin, LIU Guigui, et al. Mass flow rate characteristics of sub-/supercritical multiphase kerosene fuel nozzle[J]. Journal of Aerospace Power, 2022, 37(10):2324-2334 doi: 10.13224/j.cnki.jasp.20220271
Citation: ZHU Jiaju, HUI Xin, LIU Guigui, et al. Mass flow rate characteristics of sub-/supercritical multiphase kerosene fuel nozzle[J]. Journal of Aerospace Power, 2022, 37(10):2324-2334 doi: 10.13224/j.cnki.jasp.20220271

亚/超临界多相煤油喷嘴流量特性

doi: 10.13224/j.cnki.jasp.20220271
基金项目: 国家科技重大专项(2017-Ⅲ-0005-0029)
详细信息
    作者简介:

    朱珈驹(1998-),男,硕士生,主要研究领域为超临界航空煤油喷射燃烧

    通讯作者:

    薛鑫(1983-),男,助理研究员,博士,主要研究领域为航空发动机燃烧室。E-mail:xinxue@buaa.edu.cn

  • 中图分类号: V231.1

Mass flow rate characteristics of sub-/supercritical multiphase kerosene fuel nozzle

  • 摘要:

    为了精确设计多相煤油喷嘴,以应用于采用冷却涡轮冷气技术的航空发动机,采用轴对称的模拟喷嘴,在不同的固定喷射压力下,通过调节燃油温度,获得了亚/超临界的燃油流量变化规律。根据煤油相态的分区理论,将流量曲线分为液相区、气液两相区和超临界区,分析不同相态航空煤油流量随喷射状态变化的作用机制,分别给出液相区和超临界区的流量计算方法及气液两相区流量系数的拟合关系式。结果表明:在喷射温度从常温至750 K的范围内,流量在液相区缓慢降低,在气液两相区加速下降,最后经“拐点”温度后进入超临界区缓慢下降。计算结果与试验值最大误差为3.8%,拟合式的相关系数平方为0.9478,该结果可作为多相喷嘴设计的计算依据。同时获得的流量数据,可以作为喷嘴下游喷射结构的研究的边界条件,支撑先进航空发动机设计研发。

     

  • 图 1  试验系统图

    Figure 1.  Schematic diagram of the experiment system

    图 2  喷嘴实物图及流道示意图(单位:mm)

    Figure 2.  Applied nozzle and its flow path schematic diagram (unit:mm)

    图 3  RP-3替代燃料的s-p相图

    Figure 3.  s-p diagram of RP-3 surrogate

    图 4  亚/超临界多相RP-3煤油流量特性

    Figure 4.  Mass flow rate characteristics of sub-/supercritical multiphase RP-3 kerosene

    图 5  流量曲线1阶、2阶导数

    Figure 5.  First and second derivative of the mass flow rate curve

    图 6  RP-3替代燃料的p-T相图

    Figure 6.  p-T diagram of RP-3 surrogate fuel

    图 7  RP-3替代燃料的密度特性

    Figure 7.  Density characteristics of RP-3 surrogate

    图 8  密度曲线1阶、2阶导数

    Figure 8.  First and second derivative of the density curve

    图 9  归一化密度特性和流量特性

    Figure 9.  Normalized characteristics of density and mass flow rate

    图 10  RP-3替代燃料的黏度特性

    Figure 10.  Viscosity characteristics of RP-3 surrogate

    图 11  喷嘴流量系数随喷射工况的变化

    Figure 11.  Changes of nozzle discharge coefficient with injection condition

    图 12  “拐点”温度的计算值及其线性拟合结果

    Figure 12.  Calculated values of “inflection point” temperature and their linear fit

    图 13  液相区流量计算值与试验值比较

    Figure 13.  Comparison of the calculated and experimental values of mass flow rate in liquid regime

    图 14  超临界区流量计算值与试验值比较

    Figure 14.  Comparison of the calculated and experimental values of mass flow rate in supercritical regime

    图 15  气液两相区流量系数拟合曲线

    Figure 15.  Fitting curve of discharge coefficient in gas-liquid regime

    表  1  试验工况

    Table  1.   Experiment conditions

    参数数值
    pc/MPa2.4
    Tc/K660
    pr0.85~1.35
    Tr0.454~1.14
    pamb/MPa0.1
    下载: 导出CSV
  • [1] 范珍涔,范玮. 流动参数对超临界喷射特性影响的数值模拟[J]. 航空学报,2013,34(5): 1018-1027. doi: 10.7527/S1000-6893.2013.0191

    FAN Zhencen,FAN Wei. Numerical simulation on effects of flow parameters on supercritical injection characteristics[J]. Acta Aeronautica et Astronautica Sinica,2013,34(5): 1018-1027. (in Chinese) doi: 10.7527/S1000-6893.2013.0191
    [2] 靳乐,范玮,范珍涔,等. 超临界喷射受环境和喷射参数影响的数值研究[J]. 航空动力学报,2014,29(6): 1323-1329. doi: 10.13224/j.cnki.jasp.2014.06.009

    JIN Le,FAN Wei,FAN Zhencen,et al. Numerical investigation on effects of ambient and injection parameters on supercritical injection[J]. Journal of Aerospace Power,2014,29(6): 1323-1329. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.06.009
    [3] 申帅,范玮,靳乐,等. 超临界燃油喷射特性受喷嘴长径比影响的实验研究[J]. 推进技术,2018,39(10): 2363-2369. doi: 10.13675/j.cnki.tjjs.2018.10.021

    SHEN Shuai,FAN Wei,JIN Le,et al. Experimental study on characteristics of supercritical fuel injection affected by nozzle length-diameter ratio[J]. Journal of Propulsion Technology,2018,39(10): 2363-2369. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.10.021
    [4] 高伟. 超临界碳氢燃料在静止大气中的喷射特性研究[D]. 北京:北京航空航天大学,2010.

    GAO Wei. Injection of supercritical hydrocarbon fuels into quiescent atmospheric environment[D]. Beijing:Beijing University of Aeronautics and Astronautics,2010.(in Chinese)
    [5] HOLLAND P M,EATON B E,HANLEY H A. Correlation of the viscosity and thermal conductivity data of gaseous and liquid ethylene[J]. Journal of Physical and Chemical Reference Data,1983,12(4): 917-932. doi: 10.1063/1.555701
    [6] LIN K C,COX-STOUFFER S K,JACKSON T A,et al. Structures and phase transition processes of supercritical methane/ethylene mixtures injected into a subcritical environment[J]. Combustion Science and Technology,2006,178(1/2/3): 129-160.
    [7] WU P K,SHAHNAM M,KIRKENDALL K A,et al. Expansion and mixing processes of under expanded supercritical fuel jets injected into superheated conditions[J]. Journal of Propulsion and Power,2015,15(5): 642-649.
    [8] GAO Wei,LIN Yuzhen,HUI Xin,et al. Injection characteristics of near critical and supercritical kerosene into quiescent atmospheric environment[J]. Fuel,2019,235: 775-781. doi: 10.1016/j.fuel.2018.08.048
    [9] GERBER V,BAAB S,FÖRSTER F J,et al. Fluid injection with supercritical reservoir conditions: overview on morphology and mixing[J]. The Journal of Supercritical Fluids,2021,169: 105097.1-105097.22.
    [10] DENG Hongwu,ZHANG Chunben,XU Guoqiang,et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions[J]. Journal of Chemical and Engineering Data,2011,56(6): 2980-2986. doi: 10.1021/je200258g
    [11] DENG Hongwu,ZHANG Chunben,XU Guoqiang,et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788)K under supercritical pressure conditions[J]. Journal of Chemical and Engineering Data,2012,57(2): 358-365. doi: 10.1021/je200901y
    [12] 靳乐. RP-3航空煤油的超临界喷射,蒸发和爆震燃烧特性研究[D]. 西安:西北工业大学,2016.

    JIN Le. Investigations on the supercritical injection,evaporation,and detonation characteristics of the RP-3 aviation kerosene[D]. Xi’an:Northwestern Polytechnical University,2016.(in Chinese)
    [13] 杨占锋. 超临界燃油喷射及燃烧特性的数值模拟研究[D]. 重庆:重庆大学,2017.

    YANG Zhanfeng. Numerical simulation of supercritical fuel injection and combustion characteristics[D]. Chongqing:Chongqing University,2017.(in Chinese)
    [14] MISER C,KING P,SCHAUER F. PDE flash vaporization system for hydrocarbon fuel using thrust tube waste heat[R]. Tucson, US:AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2005.
    [15] 肖靖源,林宇震,刘桂桂,等. 超临界RP-3航空煤油喷嘴内部流动与相变特性研究[J]. 推进技术,2022,43(3): 200-208. doi: 10.13675/j.cnki.tjjs.200643

    XIAO Jingyuan,Lin Yuzhen,Liu Guigui,et al. Flow and phase transition characteristics of supercritical RP-3 aviation kerosene in injector[J]. Journal of Propulsion Technology,2022,43(3): 200-208. (in Chinese) doi: 10.13675/j.cnki.tjjs.200643
    [16] WU P K,CHEN T H,NEJAD A S,et al. Injection of supercritical ethylene in nitrogen[J]. Journal of Propulsion and Power,1996,12(4): 770-777. doi: 10.2514/3.24100
    [17] 范学军,俞刚,卢锡年,等. 超临界态航空煤油流量测量方法:CN1673692A[P]. 2005-09-28.
    [18] MANHARTSGRUBER B. Instantaneous liquid flow rate measurement utilizing the dynamic characteristics of laminar flow in circular pipes[C]//Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Honolulu,US:ASME,2003:159-164.
    [19] CHANG Fucheng,HU Zitu,LI Xi,et al. Electromagnetic-conductance measurement method for the flow rate and void fraction of gas-liquid two-phase flows[J]. Measurement:Sensors,2020,10/11/12: 100030.1-100030.7.
    [20] ADAMKOWSKI A,JANICKI W,LEWANDOWSKI M,et al. Uncertainty analysis of liquid flow rate measurement with the pressure-time method[J]. Measurement,2021,185: 109866.1-109866.23.
    [21] SHCHELCHKOV A V,FAFURIN V A,KORNEEV R A,et al. Modification of the equation for mass flow rate (mass) measurement of liquid with account of dynamic influencing factors[J]. Flow Measurement and Instrumentation,2022,83: 102117.1-102117.9.
    [22] MIKHEEV N I,MOLOCHNIKOV V M,KRATIROV D V,et al. New approach to maintaining liquid flow rate stability in national primary standard[J]. Flow Measurement and Instrumentation,2021,79: 101930.1-101930.6.
    [23] NAKAO Y,HORIGUCHI N,YOSHIDA H,et al. Measurement of flow rate of droplets and liquid film in venturi scrubber[R]. Charlotte,US:the 24th International Conference on Nuclear Engineering,2016.
    [24] BISSOR E H,YURISHCHEV A,ULLMANN A,et al. Prediction of the critical gas flow rate for avoiding liquid accumulation in natural gas pipelines[J]. International Journal of Multiphase Flow,2020,130: 103361.1-103361.19.
    [25] MORI K, ONO T,KAJI M,et al. Estimation of gas and liquid flow rates in gas-liquid two-phase flow[C]//Proceedings of the ASME International Mechanical Engineering Congress and Exposition. New Orleans,US:ASME,2002:109-113.
    [26] SHER E,BAR-KOHANY T,RASHKOVAN A. Flash-boiling atomization[J]. Progress in Energy and Combustion Science,2008,34: 417-439. doi: 10.1016/j.pecs.2007.05.001
    [27] ZHONG Fengquan,FAN Xuejun,GONG Yu,et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer,2009,23(3): 543-550. doi: 10.2514/1.41619
    [28] ELY J F,HUBER M L. NIST standard reference database 4-NIST thermophysical properties of hydrocarbon mixtures[M]. Gaithersburg, US:National Institute of Standards,1990.
    [29] 孙青梅,米镇涛,张香文. 吸热型碳氢燃料RP-3仿JP-7临界性质(tc, pc)的测定[J]. 燃料化学学报,2006,34(4): 466-470. doi: 10.3969/j.issn.0253-2409.2006.04.017

    SUN Qingmei,MI Zhentao,ZHANG Xiangwen. Determination of critical properties (tc, pc) of endothermic hydrocarbon fuels: RP-3 and simulated JP-7[J]. Journal of Fuel Chemistry and Technology,2006,34(4): 466-470. (in Chinese) doi: 10.3969/j.issn.0253-2409.2006.04.017
    [30] 曾纬. 直喷液体射流及闪急沸腾喷雾的特性及机理研究[D]. 上海:上海交通大学,2012.

    ZENG Wei. Characteristics and mechanisms of direct-injection liquid jet and flash-boiling spray[D]. Shanghai:Shanghai Jiao Tong University,2012.(in Chinese)
    [31] FAN Zhencen,FAN Wei,ZHAO Lin,et al. Experimental study on flash atomization of aviation kerosene[J]. Atomization and Sprays,2012,22(2): 163-183. doi: 10.1615/AtomizSpr.2012004932
    [32] LIU Fushui,GAO Yongli,ZHANG Zheng,et al. Study of the spray characteristics of a diesel surrogate for diesel engines under sub/supercritical states injected into atmospheric environment[J]. Fuel,2018,230: 308-318. doi: 10.1016/j.fuel.2018.05.050
    [33] 林向阳. 冷却通道内碳氢燃料跨临界流场的可视化研究[D]. 哈尔滨:哈尔滨工业大学,2015.

    LIN Xiangyang. Experiment study on transcritical flow visualization of endothermic hydrocarbon fuel in the cooling channel[D]. Harbin:Harbin Institute of Technology,2015.(in Chinese)
    [34] WANG Xinsheng,CHEN Bin,WANG Rui,et al. Experimental study on the relation between internal flow and flashing spray characteristics of R134a using straight tube nozzles[J]. International Journal of Heat and Mass Transfer,2017,115: 524-536. doi: 10.1016/j.ijheatmasstransfer.2017.08.040
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  83
  • HTML浏览量:  19
  • PDF量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回