留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气简化反应机理构建与验证

宋晨星 曾文 陈潇潇 胡二江 常亚超 马宏宇

宋晨星, 曾文, 陈潇潇, 等. 天然气简化反应机理构建与验证[J]. 航空动力学报, 2024, 39(4):20220272 doi: 10.13224/j.cnki.jasp.20220272
引用本文: 宋晨星, 曾文, 陈潇潇, 等. 天然气简化反应机理构建与验证[J]. 航空动力学报, 2024, 39(4):20220272 doi: 10.13224/j.cnki.jasp.20220272
SONG Chenxing, ZENG Wen, CHEN Xiaoxiao, et al. Construction and validation of reduced reaction mechanism of natural gas[J]. Journal of Aerospace Power, 2024, 39(4):20220272 doi: 10.13224/j.cnki.jasp.20220272
Citation: SONG Chenxing, ZENG Wen, CHEN Xiaoxiao, et al. Construction and validation of reduced reaction mechanism of natural gas[J]. Journal of Aerospace Power, 2024, 39(4):20220272 doi: 10.13224/j.cnki.jasp.20220272

天然气简化反应机理构建与验证

doi: 10.13224/j.cnki.jasp.20220272
基金项目: 国家科技重大专项(2017-Ⅲ-0006-0031)
详细信息
    作者简介:

    宋晨星(1998-),女,硕士生,主要从事碳氢燃料基础燃烧特性方面的研究。E-mail:1192745184@qq.com

    通讯作者:

    曾文(1977-),男,教授,博士,主要从事发动机先进燃烧技术方面的研究。E-mail:zengwen928@sohu.com

  • 中图分类号: V231.2;TK401

Construction and validation of reduced reaction mechanism of natural gas

  • 摘要:

    采用6种详细反应机理对多工况条件下天然气的着火延迟时间、层流燃烧速度以及氧化过程中主要组分摩尔分数进行了数值计算,并与相应试验数据进行了对比分析。结果表明:相比于其它五种详细反应机理,Aramco 2.0机理在天然气的着火延迟、层流燃烧以及氧化特性的预测上精度最高。基于Aramco 2.0机理,通过路径敏感性分析、生成速率分析与反应路径分析,形成了天然气(CH4/C2H6/C3H8)的初始简化机理(包含21种组分、150个反应);同时,基于解耦法,耦合初始简化反应机理中的C1~C3反应机理、H2/CO详细反应机理和NOx简化反应机理,构建了天然气的简化反应机理(包含40种组分、189个反应)。通过与相应试验数据的对比发现,该简化反应机理能很好的预测多工况条件下天然气的着火延迟、层流燃烧与氧化特性。

     

  • 图 1  不同工况条件下天然气的着火延迟时间

    Figure 1.  Ignition delay times of natural gas at different conditions

    图 2  天然气氧化过程中主要组分摩尔分数随温度的变化趋势(p=1.0 MPa、ϕ=1.0)

    Figure 2.  Variation trend of the main species mole fraction with temperature in the oxidation of nature gas(p=1.0 MPa,ϕ=1.0)

    图 3  不同工况条件下天然气的层流燃烧速度(p=0.1 MPa、T=298 K)

    Figure 3.  Laminar combustion speeds of natural gas at different conditions (p=0.1 MPa, T=298 K)

    图 4  天然气简化反应机理构建流程图

    Figure 4.  Flow chart of reduced reaction mechanism construction of natural gas

    图 5  天然气详细反应机理的路径敏感性分析

    Figure 5.  Path sensitivity analysis of detailed reaction mechanism of natural gas

    图 6  着火延迟时间与主要组分摩尔分数的不确定范围

    Figure 6.  Uncertainty ranges of ignition delay times and main species mole fraction

    图 7  丙烷及主要组分生成速率分析

    Figure 7.  Rate of production analysis of propane and main species

    图 8  反应路径分析

    Figure 8.  Reaction path analysis

    图 9  天然气着火延迟时间的计算值与试验值对比

    Figure 9.  Comparisons of simulated and experimental ignition delay time of natural gas

    图 10  天然气氧化过程(JSR)中主要组分摩尔分数的计算值与试验值[27]对比

    Figure 10.  Comparisons of simulated and experimental[27] main species mole fraction during natural gas oxidation process in JSR

    图 11  天然气氧化过程(流动管)中主要组分摩尔分数的计算值与试验值[28]对比

    Figure 11.  Comparisons of simulated and experimental[28] main species mole fraction during natural gas oxidation process in the flow tube

    图 12  天然气层流燃烧速度的计算值与试验值对比

    Figure 12.  Comparisons of simulated and experimental laminar combustion speeds of natural gas

    表  1  反应组分编号表

    Table  1.   Reaction component numbering table

    组分编号反应组分组分编号反应组分
    1CO26CHOCHO
    2CO227C2H3OOH
    3CH328C2H3OO
    4CH229CHCHO
    5CH2(S)30C2H2
    6C31C2H
    7CH32H2CC
    8CHV33C2H5OH
    9CH3O234C2H5O
    10CH2O2H35PC2H4OH
    11CH3OH36SC2H4OH
    12CH3O37C2H4O2H
    13CH2OH38C2H4O1-2
    14CH2O39C2H3O1-2
    15HCO40CH3CHO
    16HCOH41CH3CO
    17HO2CHO42CH2CHO
    18HOCH2O43HO2CH2CO
    19O2CHO44C2H3OH
    20HOCHO45C2H2OH
    21OCHO46CH2CO
    22C2H547HCCO
    23C2H5O248HCCOH
    24C2H449IC3H7
    25C2H350NC3H7
    下载: 导出CSV
  • [1] 尉曙明,索建秦. 航空衍生工业燃气轮机双燃料贫燃预混低污染燃烧技术[J]. 航空动力学报,2015,30(9): 2049-2057.

    WEI Shuming,SUO Jianqin. Aero-derivative industrial gas turbine dual fuel lean premixed low emission combustion technology[J]. Journal of Aerospace Power,2015,30(9): 2049-2057. (in Chinese)
    [2] DE ALMEIDA D S,LACAVA P T. Analysis of pollutant emissions in double-stage swirl chamber for gas turbine application[J]. Energy Procedia,2015,66: 117-120. doi: 10.1016/j.egypro.2015.02.067
    [3] BULAT G,JONES W P,MARQUIS A J. NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method[J]. Combustion and Flame,2014,161(7): 1804-1825. doi: 10.1016/j.combustflame.2013.12.028
    [4] LYRA S,CANT R S. Analysis of high pressure premixed flames using Equivalent Reactor Networks for predicting NOx emissions[J]. Fuel,2013,107: 261-268. doi: 10.1016/j.fuel.2012.12.066
    [5] STARIK A M,KOZLOV V E,LEBEDEV A B,et al. Application of reactor net models for the simulation of gas-turbine combustor emissions[J]. International Journal of Sustainable Aviation,2014,1(1): 43-57. doi: 10.1504/IJSA.2014.062867
    [6] ZENG Wen,PANG Liyao,ZHENG Weilin,et al. Study on combustion and emission characteristics of a heavy-duty gas turbine combustor fueled with natural gas[J]. Fuel,2020,275: 117988.1-117988.12.
    [7] 陈威昌. 天然气发动机燃烧及排放的CFD模拟研究[D]. 郑州: 华北水利水电大学, 2017.

    CHEN Weichang. CFD simulation for combustion and emission of a natural gas engine[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2017. (in Chinese)
    [8] 咸凯. 天然气发动机爆震特性研究[D]. 济南: 山东大学, 2018.

    XIAN Kai. Research on knock characteristic of natural gas engine[D]. Jinan: Shandong University, 2018. (in Chinese)
    [9] DROST S,AZNAR M S,SCHIEBL R,et al. Reduced reaction mechanism for natural gas combustion in novel power cycles[J]. Combustion and Flame,2021,223: 486-494. doi: 10.1016/j.combustflame.2020.09.029
    [10] POORGHASEMI K,SARAY R K,BAHLOULI K,et al. 3D CFD simulation of a natural gas fueled HCCI engine with employing a reduced mechanism[J]. Fuel,2016,182: 816-830. doi: 10.1016/j.fuel.2016.06.005
    [11] SMITH G P, TAO Y, WANG H. Foundational fuel chemistry model version 1.0 (FFCM-1)[EB/OL]. [2022-04-20]. http://nanoenergy.stanford.edu/ffcm1, 2016.
    [12] SMITH G. An optimized detailed chemical reaction mechanism for methane combustion[EB/OL]. [2022-04-20]. http://www.me.berkeley.edu/gri_mech.
    [13] CURRAN H J,GAFFURI P,PITZ W J,et al. A comprehensive modeling study of n-heptane oxidation[J]. Combustion and Flame,1998,114(1/2): 149-177.
    [14] WILLIAMS F A. Chemical-kinetic mechanisms for combustion applications[EB/OL]. [2022-04-20]. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
    [15] YOU X Q, AMEYA V, WANG H. USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 Compounds[EB/OL]. [2022-04-20]. http://ignis.usc. edu/USC_Mech_II.htm.
    [16] METCALFE W K,BURKE S M,AHMED S S,et al. A hierarchical and comparative kinetic modeling study of C1-C2 hydrocarbon and oxygenated fuels[J]. International Journal of Chemical Kinetics,2013,45(10): 638-675. doi: 10.1002/kin.20802
    [17] HEALY D,CURRAN H J,SIMMIE J M,et al. Methane/ethane/propane mixture oxidation at high pressures and at high, intermediate and low temperatures[J]. Combustion and Flame,2008,155(3): 441-448. doi: 10.1016/j.combustflame.2008.07.003
    [18] DAGAUT P,DAYMA G. Hydrogen-enriched natural gas blend oxidation under high-pressure conditions: experimental and detailed chemical kinetic modeling[J]. International Journal of Hydrogen Energy,2006,31(4): 505-515. doi: 10.1016/j.ijhydene.2005.04.020
    [19] BOURQUE G,HEALY D,CURRAN H,et al. Ignition and flame speed kinetics of two natural gas blends with high levels of heavier hydrocarbons[J]. Journal of Engineering for Gas Turbines and Power,2010,132(2): 021504.1-021504.11.
    [20] CHANG Yachao,JIA Ming,NIU Bo,et al. Reduction of large-scale chemical mechanisms using global sensitivity analysis on reaction class/sub-mechanism[J]. Combustion and Flame,2020,212: 355-366. doi: 10.1016/j.combustflame.2019.11.019
    [21] CHANG Yachao,JIA Ming,FAN Weiwei,et al. Decoupling methodology: an effective way for the development of reduced and skeletal mechanisms[J]. Acta Physico-Chimica Sinica,2016,32(9): 2209-2215. doi: 10.3866/PKU.WHXB201605262
    [22] CHANG Yachao,JIA Ming,LIU Yaodong,et al. Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology[J]. Combustion and Flame,2013,160(8): 1315-1332. doi: 10.1016/j.combustflame.2013.02.017
    [23] 蒋勇,邱榕. 复杂化学机理简化的关联水平法[J]. 化学学报,2010,68(5): 403-412.

    JIANG Yong,QIU Rong. A level of connection method for mechanism reduction of complex chemistry[J]. Acta Chimica Sinica,2010,68(5): 403-412. (in Chinese)
    [24] BURKE U,METCALFE W K,BURKE S M,et al. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation[J]. Combustion and Flame,2016,165: 125-136. doi: 10.1016/j.combustflame.2015.11.004
    [25] HUANG Haozhong,LÜ Delin,ZHU Jizhen,et al. Development of a new reduced diesel/natural gas mechanism for dual-fuel engine combustion and emission prediction[J]. Fuel,2019,236: 30-42. doi: 10.1016/j.fuel.2018.08.161
    [26] SEERY D J,BOWMAN C T. An experimental and analytical study of methane oxidation behind shock waves[J]. Combustion and Flame,1970,14(1): 37-47. doi: 10.1016/S0010-2180(70)80008-6
    [27] BAKALI A E,DAGAUT P,PILLIER L,et al. Experimental and modeling study of the oxidation of natural gas in a premixed flame, shock tube, and jet-stirred reactor[J]. Combustion and Flame,2004,137(1/2): 109-128.
    [28] 田雨师,曾文,陈潇潇,等. 天然气氧化特性的实验与数值计算[J]. 航空动力学报,2022,37(9): 1886-1895.

    TIAN Yushi,ZENG Wen,CHEN Xiaoxiao,et al. Experiment and simulation on oxidation characteristics of natural gas[J]. Journal of Aerospace Power,2022,37(9): 1886-1895. (in Chinese)
    [29] DIRRENBERGER P,LE GALL H,BOUNACEUR R,et al. Measurements of laminar flame velocity for components of natural gas[J]. Energy & Fuels,2011,25(9): 3875-3884.
    [30] 党嘉莹, 曾文, 陈潇潇, 等. 天然气层流燃烧特性的实验与数值计算[EB/OL]. [2021-12-27]. https: //doi.org/10.13224/j.cnki.jasp.20210468
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  73
  • HTML浏览量:  34
  • PDF量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回