留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声压信号的某型涡轴发动机喘振识别

闫思齐 张赟 李本威 刘晨光

闫思齐, 张赟, 李本威, 等. 基于声压信号的某型涡轴发动机喘振识别[J]. 航空动力学报, 2024, 39(4):20220273 doi: 10.13224/j.cnki.jasp.20220273
引用本文: 闫思齐, 张赟, 李本威, 等. 基于声压信号的某型涡轴发动机喘振识别[J]. 航空动力学报, 2024, 39(4):20220273 doi: 10.13224/j.cnki.jasp.20220273
YAN Siqi, ZHANG Yun, LI Benwei, et al. Surge identification of a turboshaft engine based on sound pressure signal[J]. Journal of Aerospace Power, 2024, 39(4):20220273 doi: 10.13224/j.cnki.jasp.20220273
Citation: YAN Siqi, ZHANG Yun, LI Benwei, et al. Surge identification of a turboshaft engine based on sound pressure signal[J]. Journal of Aerospace Power, 2024, 39(4):20220273 doi: 10.13224/j.cnki.jasp.20220273

基于声压信号的某型涡轴发动机喘振识别

doi: 10.13224/j.cnki.jasp.20220273
基金项目: 国家自然科学基金(51505492); 山东省自然科学基金(ZR2020ME125); 泰山学者建设工程专项经费
详细信息
    作者简介:

    闫思齐(1993-),男,博士生,主要从事航空发动机状态监控与健康评估。E-mail:q525943734@163.com

    通讯作者:

    张赟(1983-),男,教授,博士,主要从事航空发动机状态监测与故障诊断。E-mail:hjhy_zy@126.com

  • 中图分类号: V231.3

Surge identification of a turboshaft engine based on sound pressure signal

  • 摘要:

    为了识别某型涡轴发动机喘振时的特征,通过进气畸变方式开展了某型发动机台架试车逼喘试验,利用声压传感器测量采集了轴流压气机和离心压气机两侧的声压信号。对声压信号进行测试环境与背景噪声修正,再采用时频分析方法实现了对由于进气减少引起的压气机叶片失速团特征和低频喘振特征的检测,并采用小波低频重构声压信号方法实现了某型涡轴发动机喘振信号的提取与识别。结果表明:随着进气的增加,轴流压气机和离心压气机转子频率处声压信号幅值会降低,同时会产生失速团,轴流压气机右侧能最先监测到喘振,喘振频率约为60 Hz。

     

  • 图 1  传感器布局

    Figure 1.  Sensor location

    图 2  进气畸变发生器

    Figure 2.  Inlet distortion generator

    图 3  试验环境频带混响时间

    Figure 3.  Band reverberation time of test environment

    图 4  长型被测量物体的测量面布局

    Figure 4.  Measurement position of long measured object

    图 5  转速为32400 r/min工况下时频变换

    Figure 5.  Time-frequency transform at rotational speed of 32400 r/min

    图 6  转速为32400 r/min工况下低频处时频变换

    Figure 6.  Time-frequency transform of low frequency band at rotational speed of 32400 r/min

    图 7  转速为32400 r/min工况下低频处频谱分析

    Figure 7.  Spectrum analysis of low frequency band at rotational speed of 32400 r/min

    图 8  转速为32000 r/min工况下时频变换

    Figure 8.  Time-frequency transform at rotational speed of 32000 r/min

    图 9  转速为32000 r/min工况下低频处时频变换

    Figure 9.  Time-frequency transform of low frequency band at rotational speed of 32000 r/min

    图 10  转速为32000 r/min工况下低频处频谱分析

    Figure 10.  Spectrum analysis of low frequency band at rotational speed of 32000 r/min

    图 11  原始声压信号

    Figure 11.  Original sound pressure signal

    图 12  低通滤波器处理后声压信号

    Figure 12.  Sound pressure signal processed by low-pass filter

    图 13  小波低频系数重构后的声压信号

    Figure 13.  Sound pressure signal reconstructed by wavelet low frequency coefficient

    图 14  原始声压信号特征值

    Figure 14.  Eigenvalue of original sound pressure signal

    图 15  低通滤波器处理后声压信号特征值

    Figure 15.  Eigenvalue of sound pressure signal processed by low-pass filter

    图 16  小波低频系数重构后的声压信号特征值

    Figure 16.  Eigenvalue of sound pressure signal reconstructed by wavelet low-frequency coefficient

    图 17  转速为32400 r/min工况下的特征值

    Figure 17.  Eigenvalue at rotational speed of 32400 r/min

    图 18  转速为32000 r/min工况下的特征值

    Figure 18.  Eigenvalue at rotational speed of 32000 r/min

    表  1  转速为32400 r/min工况下插板变化

    Table  1.   Board change at rotational speed of 32400 r/min

    插板变化次数时间/s插板相对高度/%
    103.71
    24.948.25
    311.8615.36
    419.8518.82
    531.6722.04
    641.3825.00
    762.8427.82
    872.4431.71
    997.4634.46
    1099.6437.96
    11111.0941.14
    12120.7144.61
    13131.6147.79
    14142.9751.82
    15155.8252.68
    16165.0553.25
    17174.9555.07
    18186.1156.11
    下载: 导出CSV

    表  2  转速为32000 r/min工况下插板变化

    Table  2.   Board change at rotational speed of 32000 r/min

    插板变化次数时间/s插板相对高度/%
    103.96
    23.998.00
    318.612.64
    428.5417.18
    540.2323.93
    650.1628.36
    761.2732.14
    872.7635.57
    985.0338.64
    1098.3842.21
    11110.0744.25
    12120.246.43
    13132.8648.36
    14145.7250.32
    15156.9251.82
    16166.7653.39
    17176.8954.46
    18187.9955.11
    下载: 导出CSV

    表  3  转速为32400 r/min工况下喘振发生时间

    Table  3.   Time of surge at rotational speed of 32400 r/min

    监测到喘振顺序传感器位置时间/s
    13201.3479
    21201.3539
    34201.3559
    42201.3579
    下载: 导出CSV

    表  4  转速为32000 r/min工况下喘振发生时间

    Table  4.   Time of surge at rotational speed of 32000 r/min

    监测到喘振顺序传感器位置时间/s
    13209.1022
    21209.1062
    34209.1082
    42209.1102
    下载: 导出CSV
  • [1] 王玉东. 基于压气机出口静压变化率的喘振检测方法[J]. 航空动力学报,2020,35(6): 1131-1139. doi: 10.13224/j.cnki.jasp.2020.06.002

    WANG Yudong. Surge detection method based on rate of change of compressor discharge static pressure[J]. Journal of Aerospace Power,2020,35(6): 1131-1139. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.06.002
    [2] 李长征,熊兵,韩伟. 基于统计特征的轴流压气机喘振检测[J]. 航空动力学报,2010,25(12): 2656-2659. doi: 10.13224/j.cnki.jasp.2010.12.007

    LI Changzheng,XIONG Bing,HAN Wei. Surge detection of an axial compressor based on statistical characteristics[J]. Journal of Aerospace Power,2010,25(12): 2656-2659. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.12.007
    [3] 李长征,胡智琦,许思琦. 基于D-S证据融合的压气机气动失稳检测[J]. 推进技术,2017,38(8): 1870-1877.

    LI Changzheng,HU Zhiqi,XU Siqi. Aerodynamic instability detection for compressor based on D-S evidence fusion[J]. Journal of Propulsion Technology,2017,38(8): 1870-1877. (in Chinese)
    [4] 张海波,华伟,吴伟超. 一种基于发动机喘振实时模型的主动稳定性控制方法[J]. 航空动力学报,2013,28(5): 1150-1158.

    ZHANG Haibo,HUA Wei,WU Weichao. Active stability control method for turbofan engine based on post-stall model[J]. Journal of Aerospace Power,2013,28(5): 1150-1158. (in Chinese)
    [5] 彭生红,刘志友,张志林,等. 航空发动机气动失稳在线监测试验技术[J]. 航空动力学报,2021,36(9): 1880-1886. doi: 10.13224/j.cnki.jasp.20210106

    PENG Shenghong,LIU Zhiyou,ZHANG Zhilin,et al. Research for online detection of aerodynamic instability while aero-engine test[J]. Journal of Aerospace Power,2021,36(9): 1880-1886. (in Chinese) doi: 10.13224/j.cnki.jasp.20210106
    [6] MUNARI E,MORINI M,PINELLI M,et al. Experimental investigation and modeling of surge in a multistage compressor[J]. Energy Procedia,2017,105: 1751-1756. doi: 10.1016/j.egypro.2017.03.503
    [7] MUNARI E, MORINI M, PINELLI M, et al. Experimental investigation of stall and surge in a Multistage Compressor[R]. Seoul, South Korea: ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2016.
    [8] LI Changzheng,XU Siqi,HU Zhiqi. Experimental study of surge and rotating stall occurring in high-speed multistage axial compressor[J]. Procedia Engineering,2015,99: 1548-1560. doi: 10.1016/j.proeng.2014.12.707
    [9] COURTIADE N,OTTAVY X. Experimental study of surge precursors in a high-speed multistage compressor[J]. Journal of Turbomachinery,2013,135(6): 061018.1-061018.9.
    [10] ZHENG Xinqian,SUN Zhenzhong,KAWAKUBO T,et al. Experimental investigation of surge and stall in a turbocharger centrifugal compressor with a vaned diffuser[J]. Experimental Thermal and Fluid Science,2017,82: 493-506. doi: 10.1016/j.expthermflusci.2016.11.036
    [11] ZHENG Xinqian,LIU Anxiong. Phenomenon and mechanism of two-regime-surge in a centrifugal compressor[J]. Journal of Turbomachinery,2015,137(8): 081007.1-081007.7.
    [12] SUN Zhenzhong,ZHENG Xinqian,KAWAKUBO T. Experimental investigation of instability inducement and mechanism of centrifugal compressors with vaned diffuser[J]. Applied Thermal Engineering,2018,133: 464-471. doi: 10.1016/j.applthermaleng.2018.01.071
    [13] LIU A X,ZHENG X Q. Methods of surge point judgment for compressor experiments[J]. Experimental Thermal and Fluid Science,2013,51: 204-213. doi: 10.1016/j.expthermflusci.2013.07.015
    [14] CAMERON J D,MORRIS S C. Analysis of axial compressor stall inception using unsteady casing pressure measurements[J]. Journal of Turbomachinery,2013,135(2): 021036.1-021036.12.
    [15] LIU Yang,LI Jichao,DU Juan,et al. Application of fast wavelet analysis on early stall warning in axial compressors[J]. Journal of Thermal Science,2019,28(5): 837-849. doi: 10.1007/s11630-019-1207-4
    [16] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 声学 声压法测定噪声源声功率级和声能量级 反射面上方近似自由场的工程法: GB/T 3767—2016[S]. 北京: 中国标准出版社, 2016: 41.
    [17] HAYNES J M,HENDRICKS G J,EPSTEIN A H. Active stabilization of rotating stall in a three-stage axial compressor[J]. Journal of Turbomachinery,1994,116(2): 226-239. doi: 10.1115/1.2928357
    [18] PADUANO J D,GREITZER E M,EPSTEIN A H. Compression system stability and active control[J]. Annual Review of Fluid Mechanics,2001,33: 491-517. doi: 10.1146/annurev.fluid.33.1.491
    [19] 贺象,马宏伟,银越千,等. 小尺寸多级轴流压气机喘振现象试验[J]. 航空动力学报,2016,31(8): 1957-1963. doi: 10.13224/j.cnki.jasp.2016.08.022

    HE Xiang,MA Hongwei,YIN Yueqian,et al. Experiment on surge phenomenon of small multi-stage axial compressor[J]. Journal of Aerospace Power,2016,31(8): 1957-1963. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.08.022
    [20] 潘天宇,贺雷,王正鹤,等. 局部喘振频率特性及估算方法[J]. 航空动力学报,2015,30(11): 2666-2672.

    PAN Tianyu,HE Lei,WANG Zhenghe,et al. Study on the frequency of partial surge and a frequency prediction method[J]. Journal of Aerospace Power,2015,30(11): 2666-2672. (in Chinese)
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  68
  • HTML浏览量:  31
  • PDF量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回