留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GTF发动机高速柔性转子系统支点动载荷控制方法

宋梓宇 洪杰 王永锋 马艳红

宋梓宇, 洪杰, 王永锋, 等. GTF发动机高速柔性转子系统支点动载荷控制方法[J]. 航空动力学报, 2022, 37(10):2213-2223 doi: 10.13224/j.cnki.jasp.20220274
引用本文: 宋梓宇, 洪杰, 王永锋, 等. GTF发动机高速柔性转子系统支点动载荷控制方法[J]. 航空动力学报, 2022, 37(10):2213-2223 doi: 10.13224/j.cnki.jasp.20220274
SONG Ziyu, HONG Jie, WANG Yongfeng, et al. Bearing dynamic load control method for high speed flexible rotor system of GTF engine[J]. Journal of Aerospace Power, 2022, 37(10):2213-2223 doi: 10.13224/j.cnki.jasp.20220274
Citation: SONG Ziyu, HONG Jie, WANG Yongfeng, et al. Bearing dynamic load control method for high speed flexible rotor system of GTF engine[J]. Journal of Aerospace Power, 2022, 37(10):2213-2223 doi: 10.13224/j.cnki.jasp.20220274

GTF发动机高速柔性转子系统支点动载荷控制方法

doi: 10.13224/j.cnki.jasp.20220274
基金项目: “两机”重大专项基础研究项目(2017-Ⅳ-0011-0048,2017-Ⅶ-0010-0104); 国家自然科学基金(52075018)
详细信息
    作者简介:

    宋梓宇(1996-),男,博士生,主要从事航空发动机转子结构动力学研究。E-mail:derbose@163.com

  • 中图分类号: V232.4

Bearing dynamic load control method for high speed flexible rotor system of GTF engine

  • 摘要:

    针对齿轮驱动涡扇(geared turbofan,GTF)发动机高速柔性转子系统,建立力学模型与有限元模型,在分析支点动载荷组成与特征的基础上,提出临界转速支点动载荷控制方法与模态振型控制评估参数。通过控制临界转速模态振型中大质量惯性部件角向模态位移,降低转子对惯性主轴倾斜旋转惯性激励敏感度,以及控制弯曲振型节点位置靠近支点,实现高速柔性转子弯曲振型临界转速下支点动载荷控制。结果表明,通过在低压涡轮采用双支点布局,以及优化低压压气机轴颈刚度,可实现上述临界转速模态振型有效控制,转子弯曲振型临界转速下支点动载荷可降低约14%~65%,验证了本文方法有效性。

     

  • 图 1  典型GTF发动机高速柔性转子系统结构简图

    Figure 1.  Schematic diagram of high speed flexible rotor system of typical GTF engine

    图 2  GTF发动机高速柔性转子系统动力学模型

    Figure 2.  Dynamic model of high speed flexible rotor system of GTF engine

    图 3  GTF发动机高速柔性转子系统有限元模型

    Figure 3.  Finite element model of high speed flexible rotor system of GTF engine

    图 4  GTF发动机高速柔性转子系统Campbell图

    Figure 4.  Campbell diagram of high speed flexible rotor system of GTF engine

    图 5  GTF发动机高速柔性转子系统临界转速模态振型

    Figure 5.  Critical speed mode shapes of high speed flexible rotor system of GTF engine

    图 6  转子系统各阶临界转速应变能分布

    Figure 6.  Strain energy distribution at each critical speed of rotor system

    图 7  转子不平衡激励加载示意图

    Figure 7.  Schematic diagram of rotor unbalance loading

    图 8  GTF发动机高速柔性转子系统支点动载荷幅频曲线

    Figure 8.  Amplitude frequency curve of bearing dynamic load of high speed flexible rotor system of GTF engine

    图 9  GTF发动机高速柔性转子系统支点位置(增加3#支点)

    Figure 9.  Support location of high speed flexible rotor system of GTF engine (adding 3# support)

    图 10  GTF发动机高速柔性转子系统支点动载荷(增加3#支点)

    Figure 10.  Bearing dynamic load of high speed flexible rotor system of GTF engine (adding 3# support)

    图 11  转子临界转速弹性线对比(增加3#支点)

    Figure 11.  Comparison of elastic line of rotor critical speed (adding 3# support)

    图 12  低压涡轮俯仰因子对比(增加3#支点)

    Figure 12.  Comparison of CIF of low pressure turbine (adding 3# support)

    图 13  压气机轴颈刚度变化对临界转速模态影响

    Figure 13.  Influence of compressor rear shaft stiffness on rotor critical speed mode

    图 14  GTF发动机高速柔性转子系统支点动载荷(改变轴颈刚度)

    Figure 14.  Bearing dynamic load of high speed flexible rotor system of GTF engine (changing rear shaft stiffness)

    表  1  转子系统支承刚度

    Table  1.   Support stiffness of rotor system

    支点位置支承刚度/107 (N/m)
    1#支点4
    2#支点 6
    下载: 导出CSV

    表  2  GTF发动机高速柔性转子系统各阶临界转速

    Table  2.   Critical speed of high speed flexible rotor system of GTF engine

    临界转速阶次临界转速数值/(r/min)
    CrSP12710
    CrSP24802
    CrSP36697
    CrSP415912
    下载: 导出CSV
  • [1] 沈锡钢. 大涵道比涡扇发动机总体性能与循环参数设计[J]. 航空科学技术,2011(4): 4-7. doi: 10.3969/j.issn.1007-5453.2011.04.002

    SHEN Xigang. Design of performance and cycle parameters of high bypass ratio turbofan[J]. Aeronautical Science and Technology,2011(4): 4-7. (in Chinese) doi: 10.3969/j.issn.1007-5453.2011.04.002
    [2] KURZKE J. Fundamental differences between conventional and geared turbofans[R]. ASME GT2009-59745,2009.
    [3] 梁春华. 齿轮驱动涡扇发动机的发展和关键技术[J]. 航空科学技术,2006(3): 14-17. doi: 10.3969/j.issn.1007-5453.2006.03.004

    LIANG Chunhua. Key technologies and development of geared turbofan engine[J]. Aeronautical Science and Technology,2006(3): 14-17. (in Chinese) doi: 10.3969/j.issn.1007-5453.2006.03.004
    [4] OLIVER S,HERMANN K. Aero engine concepts beyond 2030: part 1 the steam injecting and recovering aero engine[J]. Journal of Engineering for Gas Turbines and Power,2021,143(2): 021001.1-021001.10. doi: 10.1115/1.4048985
    [5] 陈懋章,刘宝杰. 大涵道比涡扇发动机风扇/压气机气动设计技术分析[J]. 航空学报,2008,29(3): 513-526. doi: 10.3321/j.issn:1000-6893.2008.03.001

    CHEN Maozhang,LIU Baojie. Fan/compressor aero design technology for high bypass ratio turbofan[J]. Acta Aeronautica et Astronautica Sinica,2008,29(3): 513-526. (in Chinese) doi: 10.3321/j.issn:1000-6893.2008.03.001
    [6] 陈云永,杨小贺,卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报,2017,38(9): 22-29. doi: 10.7527/S1000-6893.2017.620953

    CHEN Yunyong,YANG Xiaohe,WEI Feifei. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica,2017,38(9): 22-29. (in Chinese) doi: 10.7527/S1000-6893.2017.620953
    [7] DEWANJI D,RAO G A,JOS V B. Feasibility study of some novel concepts for high bypass ratio turbofan engines[R]. ASME GT2009-59166,2009.
    [8] LANGSTON L S. Gears steer new engine designs[J]. Mechanical Engineering,2017,139(9): 54-55. doi: 10.1115/1.2017-Sep-7
    [9] LUND J W,ORCUTT F K. Calculations and experiments on the unbalance response of a flexible rotor[J]. Journal of Manufacturing Science and Engineering,1967,89(4): 785-796.
    [10] RIEGER N F. Unbalance response of an elastic rotor in damped flexible bearings at supercritical speeds[J]. Journal of Engineering for Gas Turbines and Power,1971,93(2): 265-275.
    [11] RABINOWITZ M D,HAHN E J. Steady-state performance of squeeze film damper supported flexible rotors[J]. Journal of Engineering for Gas Turbines and Power,1977,99(4): 552-558.
    [12] CUNNINGHAM R E. Steady-state unbalance response of a three-disk flexible rotor on flexible, damped supports[J]. Journal of Mechanical Design,1978,100(3): 563-573. doi: 10.1115/1.3453969
    [13] PALAZZOLO A B,GUNTER E J. Modal balancing of a multi-mass flexible rotor without trial weights[R]. ASME 82-GT-267,1982.
    [14] TONNESEN J. Further experiments on balancing of a high-speed flexible rotor[J]. Journal of Manufacturing Science and Engineering,1974,96(2): 431-440.
    [15] DARLOW M S,SMALLEY A J,PARKINSON A G. Demonstration of a unified approach to the balancing of flexible rotors[J]. Journal of Engineering for Gas Turbines and Power,1981,103(1): 101-107.
    [16] CHU F,HOLMES R. The effect of squeeze film damper parameters on the unbalance response and stability of a flexible rotor[R]. ASME 96-GT-377,1996.
    [17] BONELLO P,BRENNAN M J,HOLMES R. A study of the nonlinear interaction between an eccentric squeeze film damper and an unbalanced flexible rotor[J]. Journal of Engineering for Gas Turbines and Power,2004,126(4): 855-866. doi: 10.1115/1.1787503
    [18] HE F,ALLAIRE P E,DOUSTI S,et al. Forced response of a flexible rotor with squeeze film damper under parametric change[R]. ASME GT2013-95861,2013.
    [19] 韩清凯,王浩博,吕昊,等.大型挤压油膜阻尼器非线性动力学分析与优化研究进展[EB/OL]. [2022-04-04]. http://kns.cnki.net/kcms/detail/43.1409.O3.20211217.0850.002.html

    HAN Qingkai,WANG Haobo,LÜ Hao,et al.Progress review on nonlinear dynamics analyses and optimization for large-scaled squeeze film dampers[EB/OL]. [2022-04-04]. http://kns.cnki.net/kcms/detail/43.1409.O3.20211217.0850.002.html. (in Chinese)
    [20] 邓旺群,高德平. 涡轴发动机动力涡轮转子高速动平衡技术研究[J]. 航空动力学报,2003,18(5): 669-675. doi: 10.3969/j.issn.1000-8055.2003.05.017

    DENG Wangqun,GAO Deping. High speed dynamic balance technique of a power turbine rotor of a turbine shaft engine[J]. Journal of Aerospace Power,2003,18(5): 669-675. (in Chinese) doi: 10.3969/j.issn.1000-8055.2003.05.017
    [21] 邓旺群,高德平,刘金南,等. 转子高速动平衡技术在涡轴发动机整机减振中的作用[J]. 航空动力学报,2005,20(1): 78-85. doi: 10.3969/j.issn.1000-8055.2005.01.015

    DENG Wangqun,GAO Deping,LIU Jinnan,et al. Effect of high speed dynamic balance technique on turboshaft engine vibration reduction[J]. Journal of Aerospace Power,2005,20(1): 78-85. (in Chinese) doi: 10.3969/j.issn.1000-8055.2005.01.015
    [22] 邓旺群,聂卫健,徐友良,等. 涡扇发动机高速柔性转子振动故障分析及平衡技术研究[J]. 燃气涡轮试验与研究,2018,31(1): 24-30, 58. doi: 10.3969/j.issn.1672-2620.2018.01.005

    DENG Wangqun,NIE Weijian,XUN Youliang,et al. Vibration fault analysis and balance technique study on a high speed flexible rotor of a turbofan engine[J]. Gas Turbine Experiment and Research,2018,31(1): 24-30, 58. (in Chinese) doi: 10.3969/j.issn.1672-2620.2018.01.005
    [23] 付才高.航空发动机设计手册:第19册 转子动力学及整机振动[M].北京:航空工业出版社,2000.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  78
  • HTML浏览量:  68
  • PDF量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回