Recent progress and prospect of radially rotating heat pipe and engineering application
-
摘要:
为完善和发展径向旋转热管研究体系,总结了径向旋转热管及其工程应用的研究现状,包括径向旋转热管的传热性能研究、实验研究、数值模拟研究,介绍了热管涡轮盘的温度和应力控制机理,以及径向旋转热管技术在精密磨削加工、高速电动机冷却等方面的应用研究等;指出了现有径向旋转热管流动传热机理研究、数值模拟模型、传热极限研究的不足之处,热管涡轮盘耦合传热-应力控制机理及径向旋转热管更广泛的工程应用等一系列有待深入研究的方向;提出了未来径向旋转热管研究的详细建议,包括采用实验研究和数值模拟相结合的方法,重点关注离心力和科氏力作用下热管内部的流动传热特性,明确径向旋转热管传热极限,为其推广工程应用提供理论支撑。
Abstract:In order to improve and develop the research system of radially rotating heat pipe, the research status of radially rotating heat pipe along with its engineering application was summarized, including heat transfer performance research, experimental research and numerical simulation research; the mechanism of heat pipe turbine disk temperature and stress control was introduced; other applications of radially rotating heat pipe technology in precision grinding and cooling of high-speed motor were reported. The deficiencies in the study of flow and heat transfer mechanism, numerical simulation model and heat transfer limit of radially rotating heat pipe were presented. The mechanism of heat pipe turbine disk heat transfer and stress control and wider engineering applications of radially rotating heat pipe need to be further explored. Detailed suggestions for the future research of radially rotating heat pipes were proposed, including: combination of experiment and numerical simulation; focus on the flow and heat transfer characteristics of heat pipes under centrifugal and Coriolis force; determination of the heat transfer limit of radially rotating heat pipes, so as to provide a theoretical support for its popularization in engineering application.
-
-
[1] SHUKLA K N. Heat pipe for aerospace applications: an overview[J]. Journal of Electronics Cooling and Thermal Control,2015,5(1): 1-14. doi: 10.4236/jectc.2015.51001 [2] JAFARI D,FRANCO A,FILIPPESCHI S,et al. Two-phase closed thermosyphons: a review of studies and solar Applications[J]. Renewable and Sustainable Energy Reviews,2016,53(c): 575-593. [3] OZSOY A,YILDIRIM R. Prevention of icing with ground source heat pipe: a theoretical analysis for Turkey’s climate conditions[J]. Cold Regions Science and Technology,2016,125: 65-71. doi: 10.1016/j.coldregions.2016.02.003 [4] ADL-ZARRABI B,MIRZANAMADI R,JOHNSSON J. Hydronic pavement heating for sustainable ice-free roads[J]. Transport Research Procedia,2016,14: 704-713. doi: 10.1016/j.trpro.2016.05.336 [5] GRAY V H. The rotating heat pipe: a wickless, hollow shaft for transferring heat fluxes[R]. ASME 69-HT-19, 1969. [6] 庄骏, 张红. 热管技术及其工程应用[M]. 北京: 化学工业出版社, 2000. [7] 郑军,何川,张光辉. 新型拐角式整体针翅回转热管设计与试验[J]. 热能动力工程,2012,27(1): 43-50,133-134.ZHENG Jun,HE Chuan,ZHANG Guanghui. Design and test of a new elbow type integral pin-fin rotary heat pipe[J]. Journal of Engineering for Thermal Energy and Power,2012,27(1): 43-50,133-134. (in Chinese) [8] CAO Y, CHANG W S. Analyses of heat transfer limitations of radially rotating heat pipes for turbomachinery applications[R]. AIAA-97-2542, 1997. [9] LING J,CHANG W S,CAO Y. Analyses of radially rotating high-temperature heat pipes for turbomachinery applications[J]. Journal of Engineering for Gas Turbines and Power,1999,121(2): 306-312. doi: 10.1115/1.2817121 [10] LING J,CAO Y. Closed-form analytical solutions for radially rotating miniature high-temperature heat pipes including non-condensable gas effects[J]. International Journal of Heat and Mass Transfer,2000,43(19): 3661-3671. doi: 10.1016/S0017-9310(99)00339-7 [11] 罗斌. 热管涡轮盘两相传热及应力控制的机理研究[D]. 北京: 北京航空航天大学, 2017.LUO Bin. Two phase heat transfer and stress control mechanism of heat pipe turbine disk[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2017. (in Chinese) [12] DING S,LUO B,GUO L. A volume of fluid based method for vapor-liquid phase change simulation with numerical oscillation suppression[J]. International Journal of Heat and Mass Transfer,2017,110: 348-359. doi: 10.1016/j.ijheatmasstransfer.2017.03.015 [13] MAEZAWA S, SUZUKI Y, TSUCHIDA A. Heat transfer characteristics of disk-shaped rotating, wickless heat pipe[R]. London, UK: 6th International Heat Pipe Conference, 1981. [14] CAO Y. An innovative turbine blade cooling technology and micro/miniature heat pipes for turbine blades[R]. Miami, US: Miami Department of Mechanical Engineering, Florida International University, 2000. [15] LING J,CAO Y,LOPEZ A P. Experimental investigations of radially rotating miniature high-temperature heat pipes[J]. Journal of Heat Transfer,2001,123(1): 113-119. doi: 10.1115/1.1332777 [16] CAO Y. Miniature high-temperature rotating heat pipes and their applications in gas turbine cooling[J]. Frontiers in Heat Pipes,2010,1(2): 023002.1-023002.6. [17] CAO Y, LING J. An experimental study of micro radially rotating heat pipes with water as the working fluid[R]. Tainan, Taiwan: ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, 2008. [18] WAOWAEW N,TERDTOON P,MAEZAWA S,et al. Correlation to predict heat transfer characteristics of a radially rotating heat pipe at vertical position[J]. Applied Thermal Engineering,2003,23(8): 1019-1032. doi: 10.1016/S1359-4311(03)00028-0 [19] ABOUTALEBI M,MOGHADDAM A,MOHAMMADI N,et al. Experimental investigation on performance of a rotating closed loop pulsating heat pipe[J]. International Communications in Heat and Mass Transfer,2013,45: 137-145. doi: 10.1016/j.icheatmasstransfer.2013.04.008 [20] DEHSHALI M,NAZARI M,SHAFII M. Thermal performance of rotating closed-loop pulsating heat pipes: experimental investigation and semi-empirical correlation[J]. International Journal of Thermal Sciences,2018,123: 14-26. doi: 10.1016/j.ijthermalsci.2017.09.009 [21] COLLIER J G, THOME J R. Convective boiling and condensation[M]. London, UK: Oxford University Press, 1994. [22] FAGHRI A, ZHANG Y, Howell J R. Advanced heat and mass transfer[M]. Blacksburg, US: Global Digital Press, 2010. [23] YAN Y Y,ZU Y Q. A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio[J]. Journal of Computational Physics,2007,227(1): 763-775. doi: 10.1016/j.jcp.2007.08.010 [24] YAN Y Y, ZU Y Q. Numerical modelling based on lattice Boltzmann method of the behaviour of bubbles flow and coalescence in microchannels[R]. Darmstadt, Germany: ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels, 2008. [25] LUO K H,KANG Q J,HE Y L,et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science,2016,52: 62-105. doi: 10.1016/j.pecs.2015.10.001 [26] SON G,DHIR V K. Numerical simulation of saturated film boiling on a horizontal surface[J]. Journal of Heat Transfer,1997,119(3): 525-533. doi: 10.1115/1.2824132 [27] WELCH S. Direct simulation of vapor bubble growth[J]. International Journal of Heat and Mass Transfer,1998,41(12): 1655-1666. doi: 10.1016/S0017-9310(97)00285-8 [28] JURIC D,TRYGGVASON G. Computations of boiling flows[J]. International Journal of Multiphase Flow,2010,24(3): 387-410. [29] JURIC D,TRYGGVASON G. A front-tracking method for dendritic solidification[J]. Journal of Computational Physics,1996,123(1): 127-148. doi: 10.1006/jcph.1996.0011 [30] OSHER S,SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics,1988,79(1): 12-49. doi: 10.1016/0021-9991(88)90002-2 [31] SON G,DHIR V. Numerical simulation of film boiling near critical pressures with a level set method[J]. Journal of Heat Transfer,1998,120(1): 183-192. doi: 10.1115/1.2830042 [32] SON G,RAMANJAPU N,DHIR V K. Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling[J]. Journal of Heat Transfer,2002,124(1): 51-62. doi: 10.1115/1.1420713 [33] DHIR V K,MUKHERJEE A. Study of lateral merger of vapor bubbles during nucleate pool boiling[J]. Journal of Heat Transfer,2004,126(6): 1023-1039. doi: 10.1115/1.1834614 [34] SON G,DHIR V K. Three-dimensional simulation of saturated film boiling on a horizontal cylinder[J]. International Journal of Heat and Mass Transfer,2008,51(5/6): 1156-1167. [35] WU J,DHIR V K. Numerical simulations of the dynamics and heat transfer associated with a single bubble in subcooled pool boiling[J]. Journal of Heat Transfer,2010,132(11): 184-191. [36] WU J,DHIR V K. Numerical simulation of dynamics and heat transfer associated with a single bubble in subcooled boiling and in the presence of noncondensables[J]. Journal of Heat Transfer,2011,133(4): 649-659. [37] SUSSMAN M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[J]. Journal of Computational Physics,2003,187(1): 110-136. doi: 10.1016/S0021-9991(03)00087-1 [38] OLSSON E,KREISS G. A conservative level set method for two phase flow[J]. Journal of Computational Physics,2005,210(1): 225-246. doi: 10.1016/j.jcp.2005.04.007 [39] HIRT C W,NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5 [40] WELCH S W J,WILSON J A. Volume of fluid based method for fluid flows with phase change[J]. Journal of Computational Physics,2000,160(2): 662-682. doi: 10.1006/jcph.2000.6481 [41] SUN D,XU J,WANG L. Development of a vapor-liquid phase change model for volume-of-fluid method in fluent[J]. International Communications in Heat and Mass Transfer,2012,39(8): 1101-1106. doi: 10.1016/j.icheatmasstransfer.2012.07.020 [42] LIU Z,SUNDEN B,YUAN J. VOF modeling and analysis of filmwise condensation between vertical parallel plates[J]. Heat Transfer Research,2012,43(1): 47-68. doi: 10.1615/HeatTransRes.2012004376 [43] RIVA E D,COL D D. Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel[J]. Journal of Heat Transfer,2012,134(5): 807-824. [44] TSUI Y,LIN S. A VOF-based conservative interpolation scheme for interface tracking (CISIT) of two-fluid flows[J]. Numerical Heat Transfer Fundamentals,2013,63(4): 263-283. doi: 10.1080/10407790.2013.756251 [45] NICHITA B A, THOME J R. A level set method and a heat transfer model implemented into FLUENT for modeling of microscale two phase flows[R]. Bucharest, Romania: Specialists’ Meeting on System Level Thermal Management for Enhanced Platform Efficiency, 2010. [46] SCHRAGE R W. A theoretical study of interphase mass transfer[M]. New York, US: Columbia University Press, 1953. [47] MAREK R,STRAUB J. Analysis of the evaporation coefficient and the condensation coefficient of water[J]. International Journal of Heat and Mass Transfer,2014,44(1): 39-53. [48] PAUL B. Compilation of evaporation coefficients[J]. Journal of the American Rocket Society,1962,32(9): 1321-1328. [49] WANG H,GARIMELLA S V,Murthy J Y. Characteristics of an evaporating thin film in a microchannel[J]. International Journal of Heat and Mass Transfer,2007,50(19/20): 3933-3942. [50] HARDT S. Evaporation model for interfacial flows based on a continuum-field representation of the source terms[J]. Journal of Computational Physics,2008,227(11): 5871-5895. doi: 10.1016/j.jcp.2008.02.020 [51] KHARANGATE C R,LEE H,MUDAWAR I. Computational modeling of turbulent evaporating falling films[J]. International Journal of Heat and Mass Transfer,2015,81: 52-62. doi: 10.1016/j.ijheatmasstransfer.2014.09.068 [52] TANASAWA I. Advances in condensation heat transfer[J]. Advances in Heat Transfer,1991,21: 55-139. [53] LEE W H. Pressure iteration scheme for two-phase flow modeling[J]. Multiphase Transport:Fundamentals, Reactor Safety, Applications,1980(1): 407-432. [54] SCHEPPER S,HEYNDERICKX G J,Marin G B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers and Chemical Engineering,2009,33(1): 122-132. doi: 10.1016/j.compchemeng.2008.07.013 [55] FANG C,DAVID M,ROGACS A,et al. Volume of fluid simulation of boiling two-phase flow in a vapor-venting microchannel[J]. Frontiers in Heat and Mass Transfer,2010(6): 013002.1-013002.11. [56] RIVE E D,COL D D. Effect of gravity during condensation of R134a in a circular mini-channel[J]. Microgravity Science and Technology,2011,23(suppl.1): 87-97. [57] LEE H,KHARANGATE C R,MASCARENHAS N,et al. Experimental and computational investigation of vertical downflow condensation[J]. International Journal of Heat and Mass Transfer,2015,85: 865-879. doi: 10.1016/j.ijheatmasstransfer.2015.02.037 [58] KHARANGATE C R,MUDAWAR I. Review of computational studies on boiling and condensation[J]. International Journal of Heat and Mass Transfer,2017,108: 1164-1196. doi: 10.1016/j.ijheatmasstransfer.2016.12.065 [59] ALIZADEHDAKHEL A,RAHIMI M,ALSAIRAFI A A. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer,2010,37(3): 312-318. doi: 10.1016/j.icheatmasstransfer.2009.09.002 [60] BRACKBILL J U,KOTHE D B,ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100: 335-354. doi: 10.1016/0021-9991(92)90240-Y [61] KAFEEL K,TURAN A. Axi-symmetric simulation of a two phase vertical thermosyphon using Eulerian two-fluid methodology[J]. Heat and Mass Transfer,2013,49(8): 1089-1099. doi: 10.1007/s00231-013-1155-6 [62] ZHAO Z,ZHANG Y,ZHANG Y,et al. Numerical study on the transient thermal performance of a two-phase closed thermosyphon[J]. Energies,2018,11(6): 1433.1-1433.15. [63] CHEN J,FU Y,QIAN N,et al. A study on thermal performance of revolving heat pipe grinding wheel[J]. Applied Thermal Engineering,2020,182: 116065.1-116065.11. [64] LI G, ZHANG Y C, ZHANG G H. Heat transfer characteristics in radial rotating heat pipes under highspeed rotation and different filling ratios[R]. Gelendzhik, Russia: Joint 20th International Heat Pipe Conference and 14th International Heat Pipe Symposium, 2021 [65] 李果, 许源, 张雨辰, 等. 径向旋转热管的数值模拟方法[EB/OL]. [2022-04-24]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=HKDI20220403002&uniplatform=NZKPT&v=QYhreWw4sfOqRnZh2zPjMDT96em_SAkrvzLTPW3LBELBAZbUeQZNsC0iI1Mg4y8d. [66] FADHL B,WROBEL L C,JOUHARA H. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon[J]. Applied Thermal Engineering,2013,60(1/2): 122-131. [67] BUNKER R S. Gas turbine heat transfer: ten remaining hot gas path challenges[J]. Journal of Turbomachinery,2007,129(2): 193-201. doi: 10.1115/1.2464142 [68] CAO Y,LING J,RIVIR R,et al. A numerical analysis of gas turbine disks incorporating rotating heat pipes[J]. Proceedings of ASME International Mechanical Engineering Congress and Exposition,2000,3: 61-68. [69] DING S T,LUO B. Control of stress in aeroengine turbine disk using radially rotating heat pipe[J]. Journal of Thermophysics and Heat Transfer,2014,28(3): 428-439. doi: 10.2514/1.T4235 [70] CAO Y, LING J. Performance simulations of a gas turbine disk-blade assembly employing miniature rotating heat pipes[R]. Shanghai: ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, 2009. [71] CAO Y,LING J. Performance simulations of a gas turbine disk-blade assembly employing miniature radially rotating heat pipes[J]. Journal of Heat Transfer,2012,134(5): 051016.1-051016.7. [72] Cao Y. Miniature heat pipe devices for gas turbine engine applications[R]. AFRL-PR-WP-TR-2003-2074, 2002. [73] EISENMANN S, MAIR M, HUPFER A. Structural analysis of a gas turbine disk containing heat pipes using finite element analysis[R]. Cleveland, US: AIAA Propulsion and Energy Conference, 2014 [74] EISENMANN S, KÖRNER R, HUPFER A. Transient simulation of a gas turbine disk incorporating heat pipes under structural aspects[R]. Montreal, Canada: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015. [75] EISENMANN S, SCHMIDT T, GÜMMER V, et al. Fatigue analysis of a cylindrical turbine disk with integrated heat pipes[R]. Salt Lake City, US: AIAA Propulsion and Energy Conference, 2016. [76] TAAMNEH Y. Thermal analysis of gas turbine disk integrated with rotating heat pipes[J]. Case Studies in Thermal Engineering,2017,10: 335-342. doi: 10.1016/j.csite.2017.09.002 [77] 通用电气公司. 涡轮发动机转子中的热管: CN201710741668.5[P]. 2018-03-09.General Electric Company. Heat pipe in turbine engine rotor: CN201710741668.5[P]. 2018-03-09. (in Chinese) [78] 通用电气公司. 用于涡轮机中的叶轮和轮叶的热管温度管理系统: CN201610198609.3[P]. 2016-10-26.General Electric Company. Heat pipe temperature management system for disk and blade in turbine: CN201610198609.3[P]. 2016-10-26. (in Chinese) [79] 通用电气公司. 用于涡轮机的热管温度管理系统: CN201610198594.0[P]. 2016-10-26.General Electric Company. Heat pipe temperature management system for turbine: CN201610198594.0[P]. 2016-10-26. (in Chinese) [80] 付德斌,丁水汀,陶智,等. 旋转盘应力水平与温度分布的关联分析[J]. 航空动力学报,2008,23(4): 623-628. doi: 10.13224/j.cnki.jasp.2008.04.012FU Debin,DING Shuiting,TAO Zhi,et al. Correlation analysis of rotating disk stress level and temperature distribution[J]. Journal of Aerospace Power,2008,23(4): 623-628. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.04.012 [81] 付德斌,丁水汀,陶智,等. 一种基于热管理的热端部件轻量化研究[J]. 航空动力学报,2011,26(4): 814-821. doi: 10.13224/j.cnki.jasp.2011.04.018FU Debin,DING Shuiting,TAO Zhi,et al. Research on lightweight of hot end components based on thermal management[J]. Journal of Aerospace Power,2011,26(4): 814-821. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.04.018 [82] DING S,LI G,LUO B. Active control thermal-loading method to ameliorate stress in aeroengine turbine disk[J]. Journal of Thermophysics and Heat Transfer,2013,27(2): 274-285. doi: 10.2514/1.T3907 [83] DING S,LI G,DENG M. Experimental study of an actively managed thermal loading method in turbine disk[J]. Journal of Thermophysics and Heat Transfer,2014,28(1): 39-49. doi: 10.2514/1.T3953 [84] 李果. 航空发动机热端部件的主动热应力控制机理研究[D]. 北京: 北京航空航天大学, 2012.LI Guo. Research on active thermal stress control mechanism of aero-engine hot end components[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2012. (in Chinese) [85] 丁水汀, 罗斌, 杜发荣. 热管涡轮盘: CN201410345078.7[P]. 2015-07-01.DING Shuiting, LUO Bin, DU Farong. Heat pipe turbine disk: 201410345078.7 [P]. 2015-07-01. (in Chinese) [86] 陈旭. 热管式金刚石磨头的研制[D]. 南京: 南京航空航天大学, 2008.CHEN Xu. Development of a diamond grinding head with heat pipe cooling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese) [87] 钱坤. 环形热管砂轮设计及其传热性能分析[D]. 南京: 南京航空航天大学, 2010.QIAN Kun. Structural design and heat transfer analysis of heat-pipe grinding wheels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) [88] CHEN J,JIANG H,FU Y C,et al. Heat transfer performance of an axially rotating heat pipe for cooling of grinding[J]. Energies,2020,13(21): 1-13. [89] CHEN J,ZHANG L,FU Y C,et al. Heat transfer characteristics outside the condenser of a rotating heat pipe grinding wheel with a lateral air impinging jet[J]. Journal of Thermal Science,2021,30(2): 493-503. doi: 10.1007/s11630-021-1415-6 [90] CHEN J,FU Y,QIAN N,et al. Investigation on cooling behavior of axially rotating heat pipe in profile grinding of turbine blade slots[J]. Applied Thermal Engineering,2021,182: 116031.1-116031.12. [91] CHANG S W,LIN C. Thermal performance of rotating two-phase thermosyphon disc[J]. International Journal of Heat and Mass Transfer,2013,62: 40-54. doi: 10.1016/j.ijheatmasstransfer.2013.02.054 [92] CHANG S W,CAI W L. Thermal performance of two-phase thermosyphon loop in rotating thin pad[J]. International Journal of Thermal Sciences,2017,112: 270-288. doi: 10.1016/j.ijthermalsci.2016.10.011 [93] LIOU T,CHANG S,CAI W,et al. Thermal fluid characteristics of pulsating heat pipe in radially rotating thin pad[J]. International Journal of Heat and Mass Transfer,2019,131: 273-290. doi: 10.1016/j.ijheatmasstransfer.2018.10.132 [94] GRAY V H. Feasibility study of rotating boiler for high-performance Rankine cycle power generation systems[R]. Florida, US: Intersociety Energy Conversion Conference, 1967. [95] ESCHWEILER J C,BENTON A M,PRECHSHOT G W. Boiling and convective heat transfer at high-accelerations[J]. Chemical Engineering Progress Symposium Series,1967,63: 66-72.