留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机整机周向平均稳态仿真方法

金东海 梁栋 刘晓恒 张健成 王森 周成华 戴宇辰 桂幸民

金东海, 梁栋, 刘晓恒, 等. 航空发动机整机周向平均稳态仿真方法[J]. 航空动力学报, 2022, 37(11):2598-2616 doi: 10.13224/j.cnki.jasp.20220279
引用本文: 金东海, 梁栋, 刘晓恒, 等. 航空发动机整机周向平均稳态仿真方法[J]. 航空动力学报, 2022, 37(11):2598-2616 doi: 10.13224/j.cnki.jasp.20220279
JIN Donghai, LIANG Dong, LIU Xiaoheng, et al. Steady state simulation method of whole aero-engine based on circumferentially averaged method[J]. Journal of Aerospace Power, 2022, 37(11):2598-2616 doi: 10.13224/j.cnki.jasp.20220279
Citation: JIN Donghai, LIANG Dong, LIU Xiaoheng, et al. Steady state simulation method of whole aero-engine based on circumferentially averaged method[J]. Journal of Aerospace Power, 2022, 37(11):2598-2616 doi: 10.13224/j.cnki.jasp.20220279

航空发动机整机周向平均稳态仿真方法

doi: 10.13224/j.cnki.jasp.20220279
基金项目: 国家科技重大专项(2017-Ⅰ-0005-0006,2019-Ⅱ-0020-0041)
详细信息
    作者简介:

    金东海(1977-),男,副教授、博士生导师,博士,主要从事数值仿真方法及流动控制机理研究。E-mail:jdh@buaa.edu.cn

  • 中图分类号: V231.3

Steady state simulation method of whole aero-engine based on circumferentially averaged method

  • 摘要:

    自主发展了基于周向平均方法的航空发动机整机准三维数值仿真方法。基于Navier-Stokes方程,推导了周向平均的准三维通流模型控制方程,针对方程源项传统模型的不足,提出了考虑叶型影响的无黏叶片力模型、基于机器学习的压气机展向分布损失模型和基于理论分析的周向不均匀性模型等,并完成了燃烧室的准三维建模,最终实现了航空发动机整机准三维稳态仿真。利用本文发展的整机周向平均稳态准三维仿真程序CAM完成了WP11涡喷发动机整机仿真,并与俄罗斯S2程序AES-S2的仿真结果进行了对比分析。结果表明,相比于俄罗斯S2程序AES-S2,所发展的周向平均准三维仿真程序CAM仿真精度更高,在WP11整机准三维仿真的设计点计算结果对比中,CAM计算的涡轮流量的误差比AES-S2的计算误差小8%以上,发动机推力误差小16%以上;收敛性更好,CAM计算的涡轮流量的振幅比AES-S2的计算结果的振幅小10%以上,CAM计算的发动机推力的振幅比AES-S2的计算结果的振幅小20%以上。

     

  • 图 1  转子、静子叶片通道示意图

    Figure 1.  Schematic diagram of rotor and stator blade channel

    图 2  CDA叶栅叶中截面静压分布图[17]

    Figure 2.  Static pressure distribution at midspan in CDA cascade[17]

    图 3  CDA叶栅叶中截面轴向叶片力分布图[17]

    Figure 3.  Axial blade force distribution at midspan in CDA cascade[17]

    图 4  CDA叶栅叶中截面周向叶片力分布图[17]

    Figure 4.  Circumferential blade force distribution atmidspan in CDA cascade[17]

    图 5  利用损失和落后角模型求解黏性叶片力

    Figure 5.  Solving viscous blade force using loss deviation angle model

    图 6  用于估算槽道激波损失的简化通道激波结构

    Figure 6.  Simplified channel shock structure for estimating shock loss

    图 7  压气机叶片典型损失分布特征[26]

    Figure 7.  Typical loss distribution characteristics of compressor blades[26]

    图 8  WP11轴流压气机采用不同损失模型计算的各叶片排损失系数对比[27]

    Figure 8.  Comparison of loss coefficient of each blade row in axial compressor of WP11 using different loss models[27]

    图 9  WP11轴流压气机级各叶片排落后角[27]

    Figure 9.  Deviation angle of blade rows in axial compressor of WP11[27]

    图 10  数值测试集所有算例展中截面的验证结果[32]

    Figure 10.  Verification results of all numerical sample at midspan in the numerical test set[32]

    图 11  损失模型在 E3 压气机静子上的验证结果[32]

    Figure 11.  Verification results of loss model on the E3 compressor stator[32]

    图 12  前掠20°叶栅展中各周向脉动源项沿轴向分布[39]

    Figure 12.  Axial distribution of circumferential fluctuations source term at mid-span in the forward-swept 20° cascade[39]

    图 13  TA36风扇周向平均准三维仿真[27]

    Figure 13.  Quasi-3D simulation of TA36 fan using CAM[27]

    图 14  TA36风扇设计转速特性[27]

    Figure 14.  Design speed characteristics of TA36 fan[27]

    图 15  某离心甩油折流环形燃烧室结构示意图

    Figure 15.  Structural diagram of a centrifugal oil throwing baffled annular combustion chamber

    图 16  多斜孔壁气膜冷却孔结构示意图[44]

    Figure 16.  Structural diagram of multi inclined holes wall film cooling hole[44]

    图 17  某型折流环形燃烧室子午面结构简图及进气斗俯视图[43]

    Figure 17.  Structure diagram of a baffled annular combustor at meridional plane and top view of air inlet hopper[43]

    图 18  某型折流环形燃烧室并行网格结构示意图[43]

    Figure 18.  Schematic diagram of parallel grid structure of a baffled annular combustor[43]

    图 19  WP11折流燃烧室准三维仿真[43]

    Figure 19.  Quasi-3D simulation of WP11 baffled combustor[43]

    图 20  某涡喷发动机100%转速设计点流场流线图[43]

    Figure 20.  Streamline traces at 100% speed design point of a turbojet engine[43]

    图 21  某涡喷发动机100%转速设计点马赫数等值线图[43]

    Figure 21.  Contour map of Mach number at 100% speed design point of a turbojet engine[43]

    图 22  某涡喷发动机100%转速设计点涡轮进出口温度展向分布对比[43]

    Figure 22.  Comparison of spanwise temperature distribution at turbine inlet and outlet temperature at 100% speed design point of a turbojet engine[43]

    图 23  某涡喷发动机100%转速设计点涡轮质量流量及整机推力收敛结果对比[43]

    Figure 23.  Comparison of turbine mass flow and thrust convergence history at 100% speed design point of a turbojet engine[43]

    表  1  数值测试集整体验证结果[32]

    Table  1.   Overall verification results of numerical test set[32]

    参数全展高展中截面
    MAE/%0.98160.3334
    RMSE/%1.99250.5859
    R20.83020.9718
    下载: 导出CSV

    表  2  损失模型在 E3 压气机静子上的验证结果[32]

    Table  2.   Verification results of loss model on the E3 compressor stator[32]

    参数静子S1静子S2静子S3静子S4静子S5
    MAE/%1.40380.49530.41331.00761.9956
    RMSE/%1.69060.63910.50141.26802.1578
    R2−0.62760.76870.85620.0737−1.6788
    参数静子S6静子S7静子S8静子S9静子S10
    MAE/%0.87460.90920.87400.93442.4189
    RMSE/%1.05141.05311.00471.21122.7651
    R20.36760.44010.50080.2725−2.7828
    下载: 导出CSV

    表  3  俄罗斯S2程序AES-S2与周向平均程序CAM的WP11整机设计点计算结果对比

    Table  3.   Comparison of calculation results of design point of WP11 whole aero-engine between Russian S2 program AES-S2 and circumferentially averaged program CAM

    参数计算结果
    AES-S2CAM
    涡轮流量/(kg/s)12.41~15.4713.50~13.72
    涡轮流量相对误差/%−9.15~13.25−1.17~0.44
    发动机推力/kN6.197~9.8678.1899~8.3285
    发动机推力相对误差/%−27.1~16.1−1.75~−0.09
    下载: 导出CSV
  • [1] 施发树,刘兴洲. 一体化小涡扇发动机系统的气动热力数值模拟[J]. 推进技术,2000,21(2): 8-11. doi: 10.3321/j.issn:1001-4055.2000.02.003

    SHI Fashu,LIU Xingzhou. Aerodynamic and thermodynamic numerical simulation of integrated small turbofan engine system[J]. Propulsion Technology,2000,21(2): 8-11. (in Chinese) doi: 10.3321/j.issn:1001-4055.2000.02.003
    [2] 黄家骅,于廷臣,冯国泰. 某小型涡扇发动机全流道准三维数值解法[J]. 航空发动机,2005,31(2): 42-45. doi: 10.3969/j.issn.1672-3147.2005.02.014

    HUANG Jiahua,YU Tingchen,FENG Guotai. Quasi three dimensional numerical solution of the whole flow passage of a small turbofan engine[J]. Aeroengine,2005,31(2): 42-45. (in Chinese) doi: 10.3969/j.issn.1672-3147.2005.02.014
    [3] 于龙江,陈美宁,朴英. 航空发动机整机准三维流场仿真[J]. 航空动力学报,2008,23(6): 1008-1013. doi: 10.13224/j.cnki.jasp.2008.06.009

    YU Longjiang,CHEN Meining,PIAO Ying. Quasi three dimensional flow field simulation of aeroengine[J]. Journal of Aerospace Power,2008,23(6): 1008-1013. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.06.009
    [4] 曹志鹏,刘大响,桂幸民,等. 某小型涡喷发动机二维数值仿真[J]. 航空动力学报,2009,24(2): 439-444. doi: 10.13224/j.cnki.jasp.2009.02.021

    CAO Zhipeng,LIU Daxiang,GUI Xingmin,et al. Two dimensional numerical simulation of a small turbojet engine[J]. Journal of Aerospace Power,2009,24(2): 439-444. (in Chinese) doi: 10.13224/j.cnki.jasp.2009.02.021
    [5] 金东海,桂幸民. 某涡扇发动机考虑级间引气的二维数值模拟[J]. 航空动力学报,2011,26(6): 1346-1351. doi: 10.13224/j.cnki.jasp.2011.06.027

    JIN Donghai,GUI Xingmin. Two dimensional numerical simulation of a turbofan engine considering interstage bleed[J]. Journal of Aerospace Power,2011,26(6): 1346-1351. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.06.027
    [6] 刘晓恒,赵洋,桂幸民,等. 某型发动机整机匹配数值仿真试验研究报告[R]. 北京:中国航空学会,2016.

    LIU Xiaoheng,ZHAO Yang,GUI Xingmin,et al. Research report on numerical simulation test of whole engine matching[R]. Beijing:China Aeronautical Society,2016.(in Chinese)
    [7] TANG Mingzhi,JIN Donghai,GUI Xingmin. Modeling and numerical investigation of the inlet circumferential fluctuations of swept and bowed blades[J]. Journal of Thermal Science,2017,26(1): 1-10. doi: 10.1007/s11630-017-0902-2
    [8] BARALON S,ERIKSON L E,Hall U. Evaluation of high-order terms in the throughflow approximation using 3D Navier-Stokes computations of a transonic compressor rotor [R]. ASME 99-GT-74,1999.
    [9] PERRIN G,LEBOEUF F. Investigation of throughflow hypothesis in a turbine cascade using a three-dimensional Navier-Stokes computation[J]. Transactions of the ASME Journal of Turbomachinery,1995,117: 126-132. doi: 10.1115/1.2835629
    [10] SIMON J F. Contribution to throughflow modelling for axial flow turbomachines[D]. Liège,Belgium:University of Liège,2007.
    [11] BARALON S,ERIKSON L E,HALL U. Viscous throughflow modelling of transonic compressors using a time-marching finite-volume solver[R]. Chattanooga,US:13th International Symposium on Airbreathing Engines,1997.
    [12] SIMON J F,LEONARD O. A throughflow analysis tool based on the Navier-Stokes equations[R]. Lille,France:6th European Turbomachinery Conference,2005.
    [13] STURMAYR A,HIRSCH C. Through-flow model for design and analysis integrated in a 3D Navier-Stokes solver[J]. Journal of Power and Energy,1999,213(4): 263-273. doi: 10.1243/0957650991537608
    [14] 宁方飞. 考虑真实几何复杂性的压气机内部流动的数值模拟[D]. 北京:北京航空航天大学,2002.

    NING Fangfei. Numerical simulation of compressor internal flow considering real geometric complexity[D]. Beijing:Beijing University of Aeronautics and Astronautics,2002.(in Chinese)
    [15] GENTRY R A,MARTIN R E,DALY B J. An Eulerian differencing method for unsteady compressible flow problems[J]. Journal of Computational Physics,1966,1(1): 87-118. doi: 10.1016/0021-9991(66)90014-3
    [16] 金海良. 周向平均方法在多级轴流风扇/压气机设计与分析中的应用[D]. 北京:北京航空航天大学,2011.

    JIN Hailiang. Application of circumferentially averaged method in design and analysis of multistage axial fan/compressor[D]. Beijing:Beijing University of Aeronautics and Astronautics,2011.(in Chinese)
    [17] 万科. 航空叶轮机周向平均方法建模与分析应用研究[D]. 北京:北京航空航天大学,2014

    WAN Ke. Research on modeling and analysis application of circumferentially averaged method for aviation turbine[D]. Beijing:Beijing University of Aeronautics and Astronautics,2014.(in Chinese)
    [18] BOSMAN C,MARSH H. An improved method for calculating the flow in turbo-machines,including a consistent loss model[J]. Journal of Mechanical Engineering Sciences,1974,16: 25-31. doi: 10.1243/JMES_JOUR_1974_016_006_02
    [19] LIEBLEIN S. Loss and stall analysis of compressor cascades[J]. ASME Journal of Basic Engineering,1959,81(3): 387-397. doi: 10.1115/1.4008481
    [20] BULLOCK R O,JOHNSEN I A. Aerodynamic design of axial flow compressors[M]. Washington,US:Scientific and Technical Information Division,National Aeronautics and Space Administration,1965.
    [21] KOCH C C,SMITH L H. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power,1976,98(3): 411-424. doi: 10.1115/1.3446202
    [22] KÖNIG W M,HENNECKE D K,FOTTNER L. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings:part I a model for subsonic flow[J]. Journal of Turbomachinery,1996,118(1): 73-80. doi: 10.1115/1.2836609
    [23] MILLER G R,LEWIS G W,HARTMANN M J. Shock losses in transonic compressor blade rows[R]. ASME 60-WA-77,1961.
    [24] SCHWENK F C,LEWIS G W,HARTMANN M J. A preliminary analysis of the magnitude of shock losses in transonic compressors[R]. NACA RM E57A30,1957.
    [25] CREVELING H F,CARMODY R.H. Axial flow compressor design computer programs incorporating full radial equilibrium:part 2 radial distribution of total pressure and flow path or axial velocity ratio specified/program 3[R]. NASA CR-54531,1968.
    [26] ROBERTS W B,SEROVY G K,SANDERCOCK D M. Design point variation of 3-D loss and deviation for axial compressor middle stages[R]. ASME 88-GT-57,1988.
    [27] 李泽峰. 周向平均通流模型及其在叶轮机中的应用研究[D]. 北京:北京航空航天大学,2020.

    LI Zefeng. Investigation on circumferentially averaged throughflow model and its application in turbomachinery[D]. Beijing:Beijing University of Aeronautics and Astronautics,2020.(in Chinese)
    [28] CARTER A D S. The low speed performance of related aerofoils in cascades[R]. ARC CP 29,1950.
    [29] CETIN M,UECER A S,HIRSCH C,et al. Application of modified loss and deviation correlations to transonic axial compressors[R]. NASA AGARD-R-745,1987.
    [30] CREVELING H F. Axial-flow compressor computer program for calculating off-design performance[R]. NASA CR 72472,1968.
    [31] MILLER D C,WASDELL D L. Off-design prediction of compressor blade losses[R]. Londen,UK:Institute of Mechanical Engineering,1987.
    [32] YUE Zixuan,ZHOU Chenghua,JIN Donghai,et al. A spanwise loss model for axial compressor stator based on machine learning[EB/OL]. [2022-05-13]. https://doi.org/10.1016/j.cja.2022.05.013.
    [33] HOLLOWAY P,KOCH C,KNIGHT G,et al. Energy efficient engine:high pressure compressor detail design report[R]. NASA-CR-165558,1982.
    [34] 朱芳. 民用航空发动机高通流高效率风扇/增压级设计技术研究[D]. 北京: 北京航空航天大学, 2013: 37-57.

    ZHU Fang. Study on design techniques of high through-flow and high efficiency fan/booster of civil aeroen-gine[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2013: 37-57. (in Chinese)
    [35] 唐明智,金东海,郭昕,等. 叶轮机通流模型周向脉动应力项建模及分析[J]. 工程热物理学报,2018,39(9): 1935-1944.

    TANG Mingzhi,JIN Donghai,GUO Xin,et al. Modeling and analysis of circumferential fluctuating stress term in turbine flow model[J]. Journal of Engineering Thermophysics,2018,39(9): 1935-1944. (in Chinese)
    [36] WU C H,BROWN C A. A theory of the direct and in-verse problems of compressible flow past cascade of arbitrary airfoils[J]. Journal of the Aeronautical Sciences,1952,19(3): 183-196. doi: 10.2514/8.2206
    [37] WU C H,BROWN C A,PRIAN V D. An approximate method of determining the subsonic flow in an arbitrary stream filament of revolution cut by arbitrary turbomachine blades[R]. NACA-TN-2702,1952.
    [38] THOMAS J P,LÉONARD O. Investigating circum-ferential non-uniformities in throughflow calculations using a harmonic reconstruction[R]. ASME GT2008-50328,2008.
    [39] 李根深,陈乃兴,强国芳. 船用燃气轮机轴流式叶轮机械气动热力学(原理、设计与试验研究)[M]. 北京:国防工业出版社,1980.
    [40] 唐明智. 叶轮机周向不均匀性建模及对弯掠特性影响的研究[D]. 北京:北京航空航天大学,2018.

    TANG Mingzhi. Modeling and analysis of circumferential non-uniformity in turbomachinery and its influence on blade bow and sweep characteristics[D]. Beijing:Beijing University of Aeronautics and Astronautics,2018.(in Chinese)
    [41] 金东海. 轴流压气机叶片/叶型正问题数值优化设计研究[D]. 北京:北京航空航天大学,2007.

    JIN Donghai. Numerical design optimization of axial compressor blades and airfoils[D]. Beijing:Beijing University of Aeronautics and Astronautics,2007.(in Chinese)
    [42] LIU Xiaoheng,JIN Donghai,GUI Xingmin. Throughflow method for a combustion chamber with effusion cooling modelling[R]. Oslo,Norway:Turbo Expo:Power for Land,Sea,and Air,2018.
    [43] 刘晓恒. 周向平均方法在燃气轮机燃烧室及整机数值仿真中的应用研究[D]. 北京:北京航空航天大学,2021.

    LIU Xiaoheng. Research on application of circumferentially averaged method in combustion chamber and whole gas turbine engine simulation[D]. Beijing:Beijing University of Aeronautics and Astronautics,2021.(in Chinese)
    [44] MENDEZ S,NICOUD F. Adiabatic homogeneous model for flow around a multiperforated plate[J]. AIAA Journal,2008,46(10): 2623-2633. doi: 10.2514/1.37008
  • 加载中
图(25) / 表(3)
计量
  • 文章访问数:  162
  • HTML浏览量:  169
  • PDF量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回