留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碰摩引发的增压级转静耦合振动特性分析方法

曾振坤 张大义 范雨 张辉 陈璐璐

曾振坤, 张大义, 范雨, 等. 碰摩引发的增压级转静耦合振动特性分析方法[J]. 航空动力学报, 2022, 37(10):2233-2241 doi: 10.13224/j.cnki.jasp.20220281
引用本文: 曾振坤, 张大义, 范雨, 等. 碰摩引发的增压级转静耦合振动特性分析方法[J]. 航空动力学报, 2022, 37(10):2233-2241 doi: 10.13224/j.cnki.jasp.20220281
ZENG Zhenkun, ZHANG Dayi, FAN Yu, et al. Method of rub-induced booster rotor/stator coupled vibration characteristics analysis[J]. Journal of Aerospace Power, 2022, 37(10):2233-2241 doi: 10.13224/j.cnki.jasp.20220281
Citation: ZENG Zhenkun, ZHANG Dayi, FAN Yu, et al. Method of rub-induced booster rotor/stator coupled vibration characteristics analysis[J]. Journal of Aerospace Power, 2022, 37(10):2233-2241 doi: 10.13224/j.cnki.jasp.20220281

碰摩引发的增压级转静耦合振动特性分析方法

doi: 10.13224/j.cnki.jasp.20220281
基金项目: 国家自然科学基金(52175071); 国家科技重大专项(J2019-Ⅳ-023-0091); 先进航空动力创新工作站(依托中国航空发动机研究院设立,HKCX2020-02-016)
详细信息
    作者简介:

    曾振坤(1998-),男,硕士生,主要从事航空发动机转子动力学研究

    通讯作者:

    张大义(1979-),男,副教授、博士生导师,博士,主要从事航空发动机结构动力学研究。E-mail:dayi@buaa.edu.cn

  • 中图分类号: V231.92

Method of rub-induced booster rotor/stator coupled vibration characteristics analysis

  • 摘要:

    针对碰摩引发的增压级部件或篦齿封严结构的转静耦合振动问题,为克服当前动力学特性评估方法所存在的未计入碰摩非线性影响和参数影响规律不明晰的不足,建立增压级转静耦合动力学模型,求解振动响应并分析稳定性,并研究关键参数对稳定性的影响规律。结果表明:增压级转静子耦合振动响应有稳定、持续和失稳三种运动状态,存在主、次失稳转速区间;区间位置随转静模态频率线性变化,随节径数反比例变化,区间长度和个数随转静子阻尼的增大、碰摩力和初始扰动的减小而减小;尽快升速通过失稳转速区间有利于控制系统振幅,避免剧烈耦合振动发生;基于正负耦合共振裕度的传统方法不能合理评估耦合振动动力学行为,其只能预测主失稳转速区间位置,且结果偏小。

     

  • 图 1  高涵道比航空发动机风扇、增压级部件结构简图

    Figure 1.  Structural diagram of high bypass ratio aero-engine fan and booster stage

    图 2  某发动机风扇机匣协调图

    Figure 2.  Interaction diagram of a certain aero-engine fan casing

    图 3  增压级转静耦合系统的力学模型

    Figure 3.  Mechanical model of booster rotor/stator coupled system

    图 4  转静子系统瞬态响应时域曲线

    Figure 4.  Transient vibration of rotor/stator system in time-domain

    图 5  转静子系统瞬态响应频域特征

    Figure 5.  Transient vibration of rotor/stator system in frequency-domain

    图 6  不同静子固有频率下系统失稳转速区间

    Figure 6.  Unstable region of system under different stator natural frequencies

    图 7  不同节径下系统失稳转速区间

    Figure 7.  Unstable region of system under different nodal diameters

    图 8  模态频率随节径数变化时不同节径下系统失稳转速区间

    Figure 8.  Unstable region of system under different nodal diameters considering that modal frequency varies with nodal diameter

    图 9  不同静子模态阻尼比下系统失稳转速区间

    Figure 9.  Unstable region of system under different stator modal damping ratios

    图 10  初始扰动和碰摩力对临界阻尼大小的影响

    Figure 10.  Critical damping ratio under different initial disturbances and rubbing forces

    图 11  不同碰摩力下系统失稳转速区间

    Figure 11.  Unstable region of system under different rubbing forces

    图 12  不同静子初始扰动下系统失稳转速区间

    Figure 12.  Unstable region of the system under different initial displacements

    图 13  不同升速率下系统在初始扰动下的瞬态响应

    Figure 13.  Transient response of system under different accelerations

    表  1  模态坐标多自由度模型参数表

    Table  1.   Parameters of multi-degree-freedom model in modal coordinate

    参数数值
    ξ10.02
    ξ20.02
    β11
    β22
    S2
    nc3
    nr3
    Nb30
    下载: 导出CSV

    表  2  不同转速下转静子的运动状态

    Table  2.   Response behaviors of rotor/stator system under different rotational velocities

    转速运动状态
    <1.06稳定
    1.06~1.15持续
    1.15~1.39失稳
    >1.39稳定
    下载: 导出CSV

    表  3  修改后模态坐标多自由度模型参数表

    Table  3.   Revised parameters of multi-degree-freedom model in modal coordinate

    参数数值
    ξ10.02
    ξ20.05
    β11
    β22
    kc1
    S2
    nc3
    nr3
    X3τ=0)5
    下载: 导出CSV
  • [1] 龚良慈. 航空发动机设计手册:第17册 载荷及机匣承力件强度分析[M]. 北京:航空工业出版社,2001.
    [2] National Transportation Safety Board. Aircraft accident report:national airlines,incorporated,DC-10-10,N60NA,near Albuquerque,New Mexico,November 3,1973[R]. NSTB-AAR-75-2,1973.
    [3] National Transportation Safety Board. Preventing catastrophic failure of Pratt & Whitney Canada JT15D-5 engines following birdstrike or foreign object ingestion[R]. ASR-17-003,2017.
    [4] SCHMIECHEN P. Travelling wave speed coincidence[D]. London,UK:University of London,1997.
    [5] LEGRAND M,PIERRE C,CARTRAUD P,et al. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction[J]. Journal of Sound and Vibration,2009,319(1/2): 366-391. doi: 10.1016/j.jsv.2008.06.019
    [6] LEGRAND M,PIERRE C,PESEUX B. Structural modal interaction of a four degree-of-freedom bladed disk and casing model[J]. Journal of Computational and Nonlinear Dynamics,2010,5(4): 041013.1-041013.9.
    [7] KOU Haijiang,SHI Yuxiang,DU Jiaojiao,et al. Rub-impact dynamic analysis of a rotor with multiple wide-chord blades under the gyroscopic effect and geometric nonlinearity[J]. Mechanical Systems and Signal Processing,2022,168: 108563.1-108563.40.
    [8] BATAILLY A,LEGRAND M,MILLECAMPS A,et al. Numerical-experimental comparison in the simulation of rotor/stator interaction through blade-tip/abradable coating contact[J]. Journal of Engineering for Gas Turbines and Power,2012,134(8): 082504.1-082504.11.
    [9] NYSSEN F,BATAILLY A. Sensitivity analysis of rotor/stator interactions accounting for wear and thermal effects within low-and high-pressure compressor stages[J]. Coatings,2020,10(1): 74.1-74.23.
    [10] AGRAPART Q,NYSSEN F,LAVAZEC D,et al. Multi-physics numerical simulation of an experimentally predicted rubbing event in aircraft engines[J]. Journal of Sound and Vibration,2019,460: 114869.1-114869.25.
    [11] ALMEIDA P,GIBERT C,THOUVEREZ F,et al. On some physical phenomena involved in blade-casing contact[R]. Porto,Portuga:9th International Conference on Structural Dynamics,2014.
    [12] MEINGAST M B,BATAILLY A,LEGRAND M,et al. A qualitative numerical analysis of rotor-casing interactions in centrifugal compressors of helicopter engines[R].Portland,US:ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2013.
    [13] BATAILLY A,MEINGAST M,LEGRAND M. Unilateral contact induced blade/casing vibratory interactions in impellers:analysis for rigid casings[J]. Journal of Sound and Vibration,2015,337: 244-262. doi: 10.1016/j.jsv.2014.10.010
    [14] BATAILLY A,LEGRAND M. Unilateral contact induced blade/casing vibratory interactions in impellers:analysis for flexible casings with friction and abradable coating[J]. Journal of Sound and Vibration,2015,348: 344-364. doi: 10.1016/j.jsv.2015.03.027
    [15] XIAO Jiaguangyi,CHEN Yong,OUYANG Hua,et al. Investigation of fan blades vibration due to blade/casing rubbing interactions using in-plane two-dimensional model[R]. Oslo, Norway:ASME Turbo Expo 2018:Turbine Technical Conference and Exposition,2018.
    [16] SALVAT N,BATAILLY A,LEGRAND M. Two-dimensional modeling of shaft precessional motions induced by blade/casing unilateral contact in aircraft engines[R]. Dusseldorf,Germany:ASME Turbo Expo 2014:Turbine Technical Conference and Exposition,2014.
    [17] SONG Xuyuan,CHAI Zeyu,WANG Chenguang,et al. Vibration performance of rotating thin-walled cylindrical shell with tip-rubbing excitation between drum and stator vane segment of aero-engine[J]. Journal of Sound and Vibration,2022,525: 116759.1-116759.24.
    [18] 吕文林,陈俊勇,田德义. 航空涡喷、涡扇发动机结构设计准则:第六册 转子系统[R]. 北京:中国航空工业总公司发动机系统工程局,1997.
    [19] 尹泽勇. 航空发动机设计手册:第18册 叶片轮盘及主轴振动[M]. 北京:航空工业出版社,2000.
    [20] 付才高. 航空发动机设计手册:第19册 转动动力学及整机振动[M]. 北京:航空工业出版社,2000.
    [21] 晏砺堂. 高速旋转机械振动[M]. 北京:国防工业出版社,1994.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  93
  • HTML浏览量:  28
  • PDF量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回