留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人为失谐改善叶盘气弹稳定性的机理分析

范雨 刘鑫 李琳 余晓平

范雨, 刘鑫, 李琳, 等. 人为失谐改善叶盘气弹稳定性的机理分析[J]. 航空动力学报, 2022, 37(10):2142-2156 doi: 10.13224/j.cnki.jasp.20220282
引用本文: 范雨, 刘鑫, 李琳, 等. 人为失谐改善叶盘气弹稳定性的机理分析[J]. 航空动力学报, 2022, 37(10):2142-2156 doi: 10.13224/j.cnki.jasp.20220282
FAN Yu, LIU Xin, LI Lin, et al. Mechanism analysis for aero-elastic stability improvement of intentional mistuned bladed disk[J]. Journal of Aerospace Power, 2022, 37(10):2142-2156 doi: 10.13224/j.cnki.jasp.20220282
Citation: FAN Yu, LIU Xin, LI Lin, et al. Mechanism analysis for aero-elastic stability improvement of intentional mistuned bladed disk[J]. Journal of Aerospace Power, 2022, 37(10):2142-2156 doi: 10.13224/j.cnki.jasp.20220282

人为失谐改善叶盘气弹稳定性的机理分析

doi: 10.13224/j.cnki.jasp.20220282
基金项目: 国家科技重大专项(J2019-Ⅳ-0023-0091,J2019-Ⅳ-0005-0073); 航空科学基金(2019ZB051002); 先进航空动力创新工作站(HKCX2020-02-013,HKCX2020-02-016,HKCX2022-01-009)
详细信息
    作者简介:

    范雨(1987-),男,副教授、博士生导师,博士,主要从事结构振动抑制、结构健康监测等研究

    通讯作者:

    李琳(1956-),女,教授、博士生导师,博士,主要从事航空发动机结构振动分析及抑制等研究。E-mail: feililin@buaa.edu.cn

  • 中图分类号: V232.4

Mechanism analysis for aero-elastic stability improvement of intentional mistuned bladed disk

  • 摘要:

    理解人为失谐提升叶盘气动弹性稳定性的机理,有助于提高航空发动机叶盘的结构设计水平。首先,通过将失谐叶盘的气弹耦合模态投影到谐调模态张成的线性空间中,获得了以谐调叶盘气动阻尼比线性叠加表示的失谐叶盘气动阻尼比的解析表达式。从理论上证明了:失谐气弹耦合模态振型中包含多个彼此独立的谐调叶盘模态振型的贡献;气动阻尼比水平较高的谐调叶盘模态的参与提高了失谐叶盘的气弹稳定性。接着,提出了失谐叶盘气弹稳定性的预测方法,在计算过程中先分别分析失谐和气弹耦合的模态特性,再相互结合预测失谐叶盘的气动阻尼比水平。该方法只需进行一次气弹耦合分析,一是在实际设计中可降低对失谐设计叶盘气弹稳定性实验测量需求,二是降低仿真过程中的计算量,加快失谐模式寻优过程。最后,采用具有NASA-Rotor37叶型的叶盘作为研究对象,在多种失谐模式和失谐强度下验证了上述理论的正确性。结果表明:解析表达式误差小于0.1%;预测方法对稳定边界有一定的高估且误差在5%以内,对于总体影响规律的预测与精确解一致。

     

  • 图 1  气动影响系数计算流程

    Figure 1.  Calculation process of aerodynamic influence coefficient

    图 2  实体叶盘有限元模型

    Figure 2.  Finite element model of blisk

    图 3  叶盘第1阶模态族二节径振型(图2(b)蓝色圈出)

    Figure 3.  Modal shape of the blisk 1st modal family with 2 nodal diameter (blue circled in Fig.2(b))

    图 4  参考叶片振动形式

    Figure 4.  Vibration form of the reference blade

    图 5  流场计算域

    Figure 5.  Calculation domain of the flow field

    图 6  流场入口边界条件

    Figure 6.  Inlet condition of the flow field

    图 7  叶片网格节点非定常气动力

    Figure 7.  Unsteady aerodynamic force on blade nodes

    图 8  参考叶片不同振幅下气动影响系数幅值

    Figure 8.  Amplitude of the aerodynamic influence coefficient with different maximum vibration amplitudes of the reference blade

    图 9  谐调叶盘一弯模态族气动阻尼比分布

    Figure 9.  Distribution of the aerodynamic damping ratio of the tuned blisk with blade 1st bending deformation

    图 10  谐波人为失谐形式

    Figure 10.  Harmonic intentional mistuning form

    图 11  气动阻尼比准确值与近似值对比(h=6)

    Figure 11.  Comparison between the reference value and the approximate value of the aerodynamic damping ratio (h=6)

    图 12  气动阻尼比准确值与近似值对比(h=18)

    Figure 12.  Comparison between the reference value and the approximate value of the aerodynamic damping ratio (h=18)

    图 13  不同谐波人为失谐叶盘最小气动阻尼比准确值与近似值对比

    Figure 13.  Comparation between the reference value and the approximate value of the minimum aerodynamic damping ratio of the harmonic intentional mistuned blisk with different orders

    图 14  失谐强度为0.8%的叶盘最小气动阻尼比分布(准确值与近似值对比)

    Figure 14.  Distribution of the minimum aerodynamic damping ratio of the mistuned blisk with 0.8% mistuning level (comparison between the reference values and the approximate values)

    图 15  失谐强度为0.8%的叶盘最小气动阻尼比具体值(准确值与近似值对比)

    Figure 15.  Values of the minimum aerodynamic damping ratio of the mistuned blisk with 0.8% mistuning level (comparison between the reference values and the approximate values)

    图 16  谐调叶盘模态对人为失谐叶盘最小气动阻尼比贡献度

    Figure 16.  Contributions of the tuned blisk modes to the minimum aerodynamic damping ratio of the intentional mistuned blisk

    图 17  不同谐波人为失谐叶盘最小气动阻尼比预测值与准确值对比

    Figure 17.  Comparison between the predicted minimum aerodynamic damping ratio and the reference minimum aerodynamic damping ratio of the different orders harmonic intentional mistuned blisk

    图 18  不同随机失谐强度下叶盘最小气动阻尼比准确值与预测值分布对比

    Figure 18.  Distribution comparison of the predicted minimum aerodynamic damping ratio and reference minimum aerodynamic damping ratio of the random mistuned blisk with different mistuning levels

    图 19  随机失谐强度为0.8%的叶盘最小气动阻尼比对比(准确值和预测值)

    Figure 19.  Comparison of the random mistuned blisk with 0.8% mistuning level (between the reference minimum aerodynamic damping ratio and predicted minimum aerodynamic damping ratio)

    图 20  随机失谐强度为0.1%的叶盘最小气动阻尼比对比(准确值和预测值)

    Figure 20.  Comparison of the random mistuned blisk with 0.1% mistuning level (between the reference minimum aerodynamic damping ratio and predicted minimum aerodynamic damping ratio)

  • [1] SRINIVASAN A V. Flutter and resonant vibration characteristics of engine blades[J]. Journal of Engineering for Gas Turbines and Power,1997,119(4): 742-775. doi: 10.1115/1.2817053
    [2] WHITEHEAD D S. Effect of mistuning on the vibration of turbo-machine blades induced by wakes[J]. Journal of Mechanical Engineering Science,1966,8(1): 15-21. doi: 10.1243/JMES_JOUR_1966_008_004_02
    [3] BENDIKSEN O O. Flutter of mistuned turbomachinery rotors[J]. Journal of Engineering for Gas Turbines and Power,1984,106(1): 25-33.
    [4] GROTH P,MARTENSSON H,ANDERSSON C. Design and experimental verification of mistuning of a supersonic turbine blisk[J]. Journal of Turbomachinery,2010,132(1): 011012.1-011012.9.
    [5] FIGASCHEWSKY F, KÜHHORN A, BEIROW B, et al. Design and analysis of an intentional mistuning experiment reducing flutter susceptibility and minimizing forced response of a jet engine fan[R]. Charlotte, US: Turbo Expo: Power for Land, Sea, and Air, 2017
    [6] BIAGIOTTI S,PINELLI L,POLI F,et al. Numerical study of flutter stabilization in low pressure turbine rotor with intentional mistuning[J]. Energy Procedia,2018,148: 98-105. doi: 10.1016/j.egypro.2018.08.035
    [7] CORRAL R,KHEMIRI O,MARTEL C. Design of mistuning patterns to control the vibration amplitude of unstable rotor blades[J]. Aerospace Science and Technology,2018,80: 20-28. doi: 10.1016/j.ast.2018.06.034
    [8] KAZA K R V,KIELB R E. Flutter and response of a mistuned cascade in incompressible flow[J]. AIAA Journal,1982,20(8): 1120-1127. doi: 10.2514/3.51172
    [9] KIELB R E,KAZA K R V. Aeroelastic characteristics of a cascade of mistuned blades in subsonic and supersonic flows[J]. Journal of Vibration and Acoustics,1983,105: 425-433. doi: 10.1115/1.3269124
    [10] KIELB R E,KAZA K R V. Effects of structural coupling on mistuned cascade flutter and response[J]. Journal of Engineering for Gas Turbines and Power,1984,106(1): 17-24. doi: 10.1115/1.3239532
    [11] SHAPIRO B. Symmetry approach to extension of flutter boundaries via mistuning[J]. Journal of Propulsion and Power,1998,14(3): 354-366. doi: 10.2514/2.5288
    [12] CRAWLEY E F,HALL K C. Optimization and mechanisms of mistuning in cascades[J]. Journal of Engineering for Gas Turbines and Power,1985,107(2): 418-426. doi: 10.1115/1.3239742
    [13] FANG M,WANG Y. Intentional mistuning effect on the blisk vibration with aerodynamic damping[J]. AIAA Journal,2022,60(6): 3884-3893. doi: 10.2514/1.J060797
    [14] KIELB R E, HALL K C, HONG E, et al. Probabilistic flutter analysis of a mistuned bladed disks[R]. Barcelona, Spain: Turbo Expo: Power for Land, Sea, and Air, 2006.
    [15] LI L, YU X, WANG P. Research on aerodynamic damping of bladed disk with random mistuning[R]. Charlotte, US: Turbo Expo: Power for Land, Sea, and Air, 2017.
    [16] LIU X, LI L, FAN Y, et al. Improving the aero-elastic stability of bladed disks through parallel piezoelectric network[R]. Cincinnati, US: Joint Propulsion Conference, 2018.
    [17] ZHANG X,WANG Y. Mistuning effects on aero-elastic stability of contra-rotating turbine blades[J]. International Journal of Aeronautical and Space Sciences,2019,20(1): 100-113. doi: 10.1007/s42405-018-0108-1
    [18] LIU X,FAN Y,LI L,et al. Improving aeroelastic stability of bladed disks with topologically optimized piezoelectric materials and intentionally mistuned shunt capacitance[J]. Materials,2022,15(4): 1309-1332. doi: 10.3390/ma15041309
    [19] HANAMURA Y,TANAKA H,YAMAGUCHI K. A simplified method to measure unsteady forces acting on the vibrating blades in cascade[J]. Bulletin of Japan Society of Mechanical Engineers,1980,23(180): 880-887. doi: 10.1299/jsme1958.23.880
    [20] MARTEL C, CORRAL R, LLORENS J M. Stability increase of aerodynamically unstable rotors using intentional mistuning[R]. Barcelona, Spain: Turbo Expo: Power for Land, Sea, and Air, 2006
    [21] BLEEG J M,YANG M T,ELEY J A. Aeroelastic analysis of rotors with flexible disks and alternate blade mistuning[J]. Journal of Turbomachinery,2009,131(1): 011011.1-011011.9.
    [22] MARTEL C, SÁNCHEZ J J. Intentional mistuning with predominant aerodynamic effects[R]. Oslo, Norway: Turbo Expo: Power for Land, Sea, and Air, 2018.
    [23] HSU K,HOYNIAK D. A fast influence coefficient method for aerodynamically mistuned disks aeroelasticity analysis[J]. Journal of Engineering for Gas Turbines and Power,2011,133(12): 122502-122511. doi: 10.1115/1.4004110
    [24] PANOVSKY J,KIELB R E. A design method to prevent low pressure turbine blade flutter[J]. Journal of Engineering for Gas Turbines and Power,2000,122(1): 89-98. doi: 10.1115/1.483180
    [25] CAMPOBASSO M S, GILES M. Analysis of the effect of mistuning on turbomachinery aeroelasticity[R]. Lyon, France: 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, 2000.
    [26] FEINER D M,GRIFFIN J H. A fundamental model of mistuning for a single family of modes[J]. Journal of Turbomachinery,2002,124(4): 597-605. doi: 10.1115/1.1508384
    [27] 李其汉, 王延荣. 航空发动机结构强度设计问题[M]. 上海: 上海交通大学出版社, 2014.
    [28] REID L, MOORE R D. Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor[R]. NASA-TP-1337, 1978.
  • 加载中
图(21)
计量
  • 文章访问数:  136
  • HTML浏览量:  33
  • PDF量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-09-09

目录

    /

    返回文章
    返回