留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同取向双晶粒结构材料的蠕变行为分析

刘怡慧 王延荣 魏大盛

刘怡慧, 王延荣, 魏大盛. 不同取向双晶粒结构材料的蠕变行为分析[J]. 航空动力学报, 2022, 37(10):2201-2212 doi: 10.13224/j.cnki.jasp.20220283
引用本文: 刘怡慧, 王延荣, 魏大盛. 不同取向双晶粒结构材料的蠕变行为分析[J]. 航空动力学报, 2022, 37(10):2201-2212 doi: 10.13224/j.cnki.jasp.20220283
LIU Yihui, WANG Yanrong, WEI Dasheng. Analysis on creep behavior of bi-crystal structural material with different orientations[J]. Journal of Aerospace Power, 2022, 37(10):2201-2212 doi: 10.13224/j.cnki.jasp.20220283
Citation: LIU Yihui, WANG Yanrong, WEI Dasheng. Analysis on creep behavior of bi-crystal structural material with different orientations[J]. Journal of Aerospace Power, 2022, 37(10):2201-2212 doi: 10.13224/j.cnki.jasp.20220283

不同取向双晶粒结构材料的蠕变行为分析

doi: 10.13224/j.cnki.jasp.20220283
基金项目: 国家科技重大专项(J2019-Ⅳ-0006-0074, J2019-Ⅳ-0012-0080)
详细信息
    作者简介:

    刘怡慧(1996-),女,博士生,主要研究方向为定向凝固材料蠕变分析、燃气轮机结构强度评估

  • 中图分类号: V232.4

Analysis on creep behavior of bi-crystal structural material with different orientations

  • 摘要:

    基于一种宏观唯象模型编写有限元子程序,模拟了双晶粒结构材料的蠕变变形行为。所选取的蠕变模型具有明确的物理意义,模型中的3项分别描述了蠕变演化过程的3个阶段。通过模拟双晶粒结构蠕变变形行为,分析了铸造结构中的偏离角、二次取向及晶界对定向结晶材料蠕变变形行为的影响;同时,利用坐标系的两次旋转,模拟材料的铸造偏离角和二次取向;通过改变晶界的倾斜角度,模拟材料的小角度倾斜晶界。结果表明:铸造偏离角会明显降低材料的蠕变性能,但二次取向对材料蠕变行为影响较小,晶界的倾斜角度使晶界附近材料的蠕变行为产生明显变化。

     

  • 图 1  双晶粒模型

    Figure 1.  Bi-crystal model

    图 2  蠕变模型示意图[16]

    Figure 2.  Schematic diagram of creep model

    图 3  蠕变子程序调用计算流程

    Figure 3.  Calculation flow of creep subroutine

    图 4  蠕变曲线拟合结果

    Figure 4.  Fitting results of creep curve

    图 5  两次旋转示意图

    Figure 5.  Schematic diagram of rotation of two times

    图 6  不同密度的有限元网格

    Figure 6.  Finite element meshes with different densities

    图 7  蠕变应变计算结果对比

    Figure 7.  Comparison of creep strain calculation results

    图 8  蠕变应变的提取位置

    Figure 8.  Extraction locations of creep strain

    图 9  铸造偏离角示意图

    Figure 9.  Schematic diagram of casting deviation angle

    图 10  晶粒2不同$ {\gamma _2} $蠕变应变与总应变对比

    Figure 10.  Comparison of creep strain and total strain of grain 2 with different $ {\gamma _2} $

    图 11  应变提取路径

    Figure 11.  Extraction path of strain

    图 12  不同铸造偏离角蠕变应变对比

    Figure 12.  Comparison of creep strains at different casting deviation angles

    图 13  晶界两侧蠕变应变对比

    Figure 13.  Comparison of creep strain on both sides of grain boundary

    图 14  不同二次取向角的蠕变应变与总应变对比

    Figure 14.  Comparison of creep strain and total strain at different secondary orientation angles

    图 15  不同二次取向角的蠕变应变对比

    Figure 15.  Comparison of creep strain at different secondary orientation angles

    图 16  不同晶界角度蠕变应变与总应变对比

    Figure 16.  Comparison of creep strain and total strain at different grain boundary angles

    图 17  存在倾斜晶界时不同铸造偏离角蠕变应变对比

    Figure 17.  Comparison of creep strains at different casting deflection angles in presence of inclined grain boundaries

    图 18  存在倾斜晶界时不同二次取向角蠕变应变对比

    Figure 18.  Comparison of creep strains at different secondary orientation angles in presence of inclined grain boundaries

    图 19  $ {\gamma _2}{\text{ = }}0^\circ $$ {\gamma _2}{\text{ = 18}}0^\circ $时总位移

    Figure 19.  Total displacements of $ {\gamma _2}{\text{ = }}0^\circ $ and $ {\gamma _2}{\text{ = 18}}0^\circ $

    表  1  蠕变应变率的参数拟合结果

    Table  1.   Fitting parameters of creep strain rate equation

    取向温度/℃$ C $$ n $$ {Q_{ijk}} $/$ {\text{(kJ/mol)}} $
    [001]7606.64×10−31.76892148.04
    下载: 导出CSV

    表  2  蠕变应变率拟合结果

    Table  2.   Fitting results of creep strain rate

    温度/
    应力/
    MPa
    蠕变应变率/
    10−5 h−1
    拟合蠕变应变率/
    10−5 h−1
    误差/
    %
    760600$ 2.27 $$ 1.79 $11.9
    850500$ 3.25 $$ 5.15 $−22.5
    850570$ 8.57 $$ 6.49 $13.8
    980200$ 3.15 $$ 5.27 $−25.2
    980240$ 6.93 $$ 7.28 $−2.4
    107050$ 0.882 $$ 1.18 $−14.3
    107080$ 3.87 $$ 2.70 $17.8
    1070120$ 6.68 $$ 5.53 $9.4
    下载: 导出CSV

    表  3  蠕变曲线参数$ \eta $拟合结果

    Table  3.   Fitting parameters $ \eta $ of creep curve

    温度/℃应力/MPa$ {\eta _1} $/%$ {\eta _2} $/%$ {\eta _3} $/%$ {\eta _4} $$ {\eta _5} $
    7606000.011.957225.04270.018.0
    8505000.101.555625.44330.018.0
    8505701.000.756025.79280.608.0
    9802000.014.464322.53560.018.0
    9802400.012.769824.23010.018.0
    1070801.5011.438114.13663.008.0
    10701200.603.049723.51381.308.0
    下载: 导出CSV

    表  4  蠕变模型参数$ \eta $拟合结果

    Table  4.   Fitting parameters $ \eta $ of creep model

    拟合参数$ {a_i} $$ {b_i} $$ {c_i} $$ {d_i} $
    $ {\eta _1} $−121.0399137.1963122.1561−124.7935
    $ {\eta _4} $−141.1600170.3370170.3718−192.4018
    下载: 导出CSV

    表  5  不同密度网格计算结果对比

    Table  5.   Comparison of calculation results among grids with different densities

    网格名称网格数量300 h蠕变应变/%
    ABCD
    5120.55910.55050.50620.5049
    40960.55900.54940.50540.5049
    327680.55890.54950.50480.5048
    下载: 导出CSV
  • [1] 张雪薇,李超,罗胜年. 晶粒取向和晶界对双晶铜变形的影响[J]. 实验力学,2019,34(3): 406-412. doi: 10.7520/1001-4888-17-228

    ZHANG Xuewei,LI Chao,LUO Shengnian. On the effect of grain orientation and grain boundary on the deformation of bicrystal copper[J]. Journal of Experimental Mechanics,2019,34(3): 406-412. (in Chinese) doi: 10.7520/1001-4888-17-228
    [2] SHI Yi,YANG Xiaoguang,YANG Didi,et al. The influence of temperature and orientation on fatigue crack growth behavior of a directional solidification nickel-based superalloy:experimental investigation and modelling[J]. International Journal of Fatigue,2019,125(8): 505-519.
    [3] WEI Wencong,ZHANG Jiawei,SONG Jinxia,et al. Effect of secondary orientation on micromechanical properties of nickel base single crystal superalloy[J]. Journal of Physics:Conference Series,2021,1907(1): 012011.1-012011.5.
    [4] NEWELL M,D’SOUZA N,GREEN N R,et al. Formation of low angle boundaries in Ni-based superalloys[J]. International Journal of Cast Metals Research,2013,22: 66-69.
    [5] BOGDANOWICZ W,ALBRECHT R,SIENIAWSKI J,et al. The subgrain structure in turbine blade roots of CMSX-4 superalloy[J]. Journal of Crystal Growth,2014,401: 418-422. doi: 10.1016/j.jcrysgro.2013.11.092
    [6] TENG Yao,SHI Tao,ZHU Yuping,et al. Experimental study on the anisotropic stress-strain behavior of polycrystalline Ni-Mn-Ga in directional solidification[J]. Journal of Materials Engineering and Performance,2016,25(3): 1056-1061. doi: 10.1007/s11665-016-1920-z
    [7] WANG Y N,HUANG J C. Comparison of grain boundary sliding in fine grained Mg and Al alloys during superplastic deformation[J]. Scripta Materialia,2003,48(8): 1117-1122. doi: 10.1016/S1359-6462(02)00615-2
    [8] SU J Q,DEMURA M,HIRANO T. Mechanical behaviour of Σ3 boundaries in Ni3Al[J]. Acta Materialia,2003,51(9): 2505-2515. doi: 10.1016/S1359-6454(03)00047-8
    [9] 曹亮,周亦胄,金涛,等. 晶界角度对一种镍基双晶高温合金持久性能的影响[J]. 金属学报,2014,50(1): 11-18.

    CAO Liang,ZHOU Yizhou,JIN Tao,et al. Effect of grain boundary angle on stress rupture properties of a Ni-based bicrystal superalloy[J]. Acta Metallurgica Sinica,2014,50(1): 11-18. (in Chinese)
    [10] 秦健朝,崔仁杰,黄朝晖. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响[J]. 材料工程,2020,48(10): 114-122. doi: 10.11868/j.issn.1001-4381.2020.000002

    QIN Jiangchao,CUI Renjie,HUANG Chaohui. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base surperalloy at medium temperature and high temperature[J]. Journal of Meterials Engineering,2020,48(10): 114-122. (in Chinese) doi: 10.11868/j.issn.1001-4381.2020.000002
    [11] FENG Lu,ZHANG Guang,ZHANG Keshi. Grain boundary effects on the inelastic deformation behavior of bicrystals[J]. Materials Science and Engineering A,2003,361(1/2): 83-92. doi: 10.1016/S0921-5093(03)00476-3
    [12] REDDY K V,PAL S. Influence of grain boundary complexion on deformation mechanism of high temperature bending creep process of Cu bicrystal[J]. Transactions of the Indian Institute of Metals,2018,71(7): 1721-1734. doi: 10.1007/s12666-018-1312-1
    [13] SPEAROT D E,JACOB K I,MCDOWELL D L. Dislocation nucleation from bicrystal interfaces with dissociated structure[J]. International Journal of Plasticity,2007,23(1): 143-160. doi: 10.1016/j.ijplas.2006.03.008
    [14] 王佳良. 涡轮叶/盘结构材料疲劳与蠕变分析方法研究[D]. 北京:北京航空航天大学,2019.

    WANG Jialiang. Research on fatigue and creep analysis method of structural materials for turbine blade/disk[D]. Beijing:Beijing University of Aeronautics and Astronautics,2019.(in Chinese)
    [15] 杜正兴,温志勋,侯乃先,等. 考虑两种晶界的各向异性双晶和三晶体晶界附近弹塑性应力场分析[J]. 计算力学学报,2008,25(5): 627-633.

    DU Zhengxing,WEN Zhixun,HOU Naixian,et al. Elastic-plastic stress distribution near grain boundary in anisotropic bicrystals and tricrystals considering two kinds of grain boundaries[J]. Chinese Journal of Computational Mechanics,2008,25(5): 627-633. (in Chinese)
    [16] 《航空发动机设计用材料数据手册》编委会. 航空发动机设计用材料数据手册:第四册[M]. 北京:航空工业出版,2010:250-322.
    [17] WEI Dasheng,WANG Jialiang,WANG Yanrong,et al. Experimental and numerical investigation of the creep behaviour of Ni-based superalloy GH4169 under varying loading[J]. Fatigue and Fracture of Engineering Materials and Structures,2018,41(5): 1146-1158. doi: 10.1111/ffe.12759
    [18] DOBES F,MILICKA K. Internal stress and activation energy of creep[J]. Materials Science and Engineering A,2007,462(1/2): 380-383. doi: 10.1016/j.msea.2005.11.079
    [19] 程域钊. 蠕变建模及叶盘结构应力分析[D]. 北京:北京航空航天大学,2015.

    CHENG Yuzhao. Modelling of creep and stress analysis of turbine disk and blade[D]. Beijing:Beijing University of Aeronautics and Astronautics,2015.(in Chinese)
    [20] WEI Dasheng,LIU Yihui,WANG Yanrong,et al. Normalized parameter creep model of DD6 nickel-based single crystal superalloy[J]. Metals,2021,11(2): 254.1-254.18.
    [21] WANG Binqiang,ZENG Long,REN Neng,et al. A comprehensive understanding of grain selection in spiral grain selector during directional solidification[J]. Journal of Materials Science and Technology,2022,102: 204-212. doi: 10.1016/j.jmst.2021.06.025
    [22] SWANSON G A,LINASK I,NISSLEY D M,et al. Life prediction and constitutive models for engine hot section anisotropic materials program[R]. NASA-1986-15532,1986.
    [23] 王柠,刘林,高斯峰,等. 镍基单晶高温合金螺旋选晶过程的数值模拟[J]. 稀有金属材料与工程,2013,42(12): 2558-2562.

    WANG Ning,LIU Lin,GAO Sifeng,et al. Simulation of grain selection during solidification of Ni base single crystal superalloy in spiral grain selector[J]. Rare Metal Materials and Engineering,2013,42(12): 2558-2562. (in Chinese)
    [24] ZHU Xintao,YANG Qiang,WANG Fu,et al. Grain orientation optimization of two-dimensional grain selector during directional solidification of Ni-based superalloys[J]. Materials,2020,13(5): 1121.1-1121.10.
    [25] 温志勋,于庆民,岳珠峰. 含与不含晶界空穴的双晶体蠕变行为研究[J]. 计算力学学报,2008,25(2): 194-200.

    WEN Zhixun,YU Qingmin,YUE Zhufeng. Study on creep behavior of the bi-crystal with or without void in the grain boundary[J]. Chinese Journal of Computational Mechanics,2008,25(2): 194-200. (in Chinese)
    [26] 邓安华. 金属材料简明辞典[M]. 北京:冶金工业出版社,1992:345.
    [27] 刘颖超. 晶界对双晶γ-TiAl力学性能影响的计算机模拟[D]. 南京:南京航空航天大学,2018.

    LIU Yingchao. Computer simulation of mechanical tensile properties on grain boundry in bicrystal γ-TiAl[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018.(in Chinese)
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  143
  • HTML浏览量:  18
  • PDF量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-09-08

目录

    /

    返回文章
    返回