留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预混火焰诱导里克管热声振荡实验

罗列朝 李挺 邓江革 赵润洲 王晋魁

罗列朝, 李挺, 邓江革, 等. 预混火焰诱导里克管热声振荡实验[J]. 航空动力学报, 2022, 37(11):2553-2559 doi: 10.13224/j.cnki.jasp.20220284
引用本文: 罗列朝, 李挺, 邓江革, 等. 预混火焰诱导里克管热声振荡实验[J]. 航空动力学报, 2022, 37(11):2553-2559 doi: 10.13224/j.cnki.jasp.20220284
LUO Liezhao, LI Ting, DENG Jiangge, et al. Experiment of thermoacoustic oscillation phenomenon in Rijke tube induced by premixed flame[J]. Journal of Aerospace Power, 2022, 37(11):2553-2559 doi: 10.13224/j.cnki.jasp.20220284
Citation: LUO Liezhao, LI Ting, DENG Jiangge, et al. Experiment of thermoacoustic oscillation phenomenon in Rijke tube induced by premixed flame[J]. Journal of Aerospace Power, 2022, 37(11):2553-2559 doi: 10.13224/j.cnki.jasp.20220284

预混火焰诱导里克管热声振荡实验

doi: 10.13224/j.cnki.jasp.20220284
基金项目: 航空发动机气动热力国家级重点实验室基金
详细信息
    作者简介:

    罗列朝(1994-),男,博士生,主要从事激光燃烧诊断方面的研究

    通讯作者:

    李挺(1981-),男,副教授、博士生导师,博士,主要从事发动机燃烧先进诊断技术等方面的研究。E-mail: li1329@buaa.edu.cn

  • 中图分类号: V219;TK311

Experiment of thermoacoustic oscillation phenomenon in Rijke tube induced by premixed flame

  • 摘要:

    为了探究热声振荡现象中各物理量的变化规律,采用单端可调谐激光吸收光谱技术对火焰的温度进行了测量,测量频率为5 kHz,揭示了热声振荡中温度的变化规律。在里克管中,温度以大约230 Hz的频率规律性变化,变化频率与里克管的本征频率接近。里克管出口处的静压监测表明静压与温度在同一频率变化。此外,采用高速相机对火焰化学自发光进行了测量,火焰化学发光强度及发光面积在静压的影响下,也在周期性波动。温度、静压、化学发光强度三者波动频率保持一致。

     

  • 图 1  吸收光谱测量示意图

    Figure 1.  Schematic diagram of absorption spectroscopy

    图 2  实验装置示意图

    Figure 2.  Scheme of experimental setup

    图 3  Y型光纤示意图

    Figure 3.  Schematic of Y-shape fiber

    图 4  吸收光谱图

    Figure 4.  Absorbance spectrum

    图 5  火焰温度幅值变化及频率分布

    Figure 5.  Temperature variation of flame and its frequency distribution

    图 6  不同时刻的火焰化学发光强度

    Figure 6.  Measurements of flame chemiluminescence intensity at different times

    图 7  火焰发光强度面积和里克管出口处的静压

    Figure 7.  Flame radiation intensity area and fluctuations of static pressure at exit of Rijke tube

  • [1] DOWLING A P. The calculation of thermoacoustic oscillations[J]. Journal of Sound and Vibration,1995,180(4): 557-581. doi: 10.1006/jsvi.1995.0100
    [2] CHU B T,LESLIE S G K. Non-linear interactions in a viscous heat-conducting compressible gas[J]. Journal of Fluid Mechanics,1958,3(5): 494-514. doi: 10.1017/S0022112058000148
    [3] MARBLE F E,CANDEL S M. Acoustic disturbance from gas non-uniformities convected through a nozzle[J]. Journal of Sound and Vibration,1977,55(2): 225-243. doi: 10.1016/0022-460X(77)90596-X
    [4] STOW S R,DOWLING A P,HYNES T P. Reflection of circumferential modes in a choked nozzle[J]. Journal of Fluid Mechanics,2007,467: 215-239.
    [5] DURAN I,MOREAU S. Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion[J]. Journal of Fluid Mechanics,2013,723: 190-231. doi: 10.1017/jfm.2013.118
    [6] DURAN I,MORGANS A S. On the reflection and transmission of circumferential waves through nozzles[J]. Journal of Fluid Mechanics,2015,773: 137-153. doi: 10.1017/jfm.2015.247
    [7] POLIFKE W,PASCHEREIT C O,PASCHEREIT K. Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit[J]. International Journal of Acoustics and Vibration,2001,6(3): 135-146.
    [8] DOWLING A P,STOW S R. Acoustic analysis of gas-turbine combustors[J]. Journal of Propulsion and Power,2005,19(5): 751-758.
    [9] NADER K,MICHAEL J B,WILLIAM H M. Acoustic and disturbance energy analysis of a flow with heat communication[J]. Journal of Fluid Mechanics,2008,596: 67-89.
    [10] BAUERHEIM M,NICOUD F,POINSOT T. Theoretical analysis of the mass balance equation through a flame at zero and non-zero Mach numbers[J]. Combustion and Flame,2015,162(1): 60-67. doi: 10.1016/j.combustflame.2014.06.017
    [11] LIN S C,BOMBERG S,POLIFKE W. Propagation and generation of acoustic and entropy waves across a moving flame front[J]. Combustion and Flame,2016,166: 170-180. doi: 10.1016/j.combustflame.2016.01.015
    [12] MORGANS A S,DURAN I. Entropy noise: a review of theory, progress and challenges[J]. International Journal of Spray and Combustion Dynamics,2016,8(4): 285-298. doi: 10.1177/1756827716651791
    [13] KELLER J J,EGLI W,HELLAT J. Thermally induced low-frequency oscillations[J]. Journal of Applied Mathematics and Physics,1985,36(2): 250-274.
    [14] ECKSTEIN J, FREITAG E, HIRSCH C, et al. Experimental study on the role of entropy waves in low-frequency oscillations for a diffusion burner[R]. Vienna, Austria: ASME Turbo Expo: Power for Land, Sea, and Air, 2004.
    [15] BAKE F,RICHTER C,MÜHLBAUER B,et al. The entropy wave generator (EWG): a reference case on entropy noise[J]. Journal of Sound and Vibration,2009,326(3/4/5): 574-598.
    [16] WASSMER D,SCHUERMANS B,PASCHEREIT C O,et al. An acoustic time-of-flight approach for unsteady temperature measurements: characterization of entropy waves in a model gas turbine combustor[J]. Journal of Engineering for Gas Turbines and Power,2016,139(4): 041501.1-041501.8.
    [17] HENDRICKS A G,VANDSBURGER U,SAUNDERS W R,et al. The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics[J]. Measurement Science and Technology,2006,17: 139-144. doi: 10.1088/0957-0233/17/1/023
    [18] WANG Guoqing,LIU Xunchen,WANG Sirui,et al. Experimental investigation of entropy waves generated from acoustically excited premixed swirling flame[J]. Combustion and Flame,2019,204: 85-102. doi: 10.1016/j.combustflame.2019.03.005
    [19] WEBBER M E,BAER D S,HANSON R K. Ammonia monitoring near 1.5 m with diode-laser absorption sensors[J]. Applied Optics,2001,40(12): 2031-42. doi: 10.1364/AO.40.002031
    [20] GOLDENSTEIN C S,SPEARRIN R M,JEFFRIES J B,et al. Infrared laser-absorption sensing for combustion gases[J]. Progress in Energy and Combustion Science,2017,60: 132-176. doi: 10.1016/j.pecs.2016.12.002
    [21] REUTER S,SOUSA J S,STANCU G D,et al. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets[J]. Plasma Sources Science and Technology,2015,24(5): 054001.1-054001.41.
    [22] BAYU D, SERGEY A S, AUDREY BLONDÉ, et al. Entropy waves measurement of a technically premixed turbulent swirled flame by tunable diode laser absorption spectroscopy[R]. San Diego, US: 2022 Science and Technology Forum and Exposition, 2022.
    [23] GOH C S,MORGANS A S. The influence of entropy waves on the thermoacoustic stability of a model combustor[J]. Combustion Science and Technology,2013,185(1/2/3): 249-268.
    [24] ZHANG Mingxuan,LI Ting,CHENG Wenwang,et al. Active control of thermoacoustic instability using microsecond plasma discharge[J]. Journal of Applied Physics,2020,127(3): 033301.1-033301.9.
    [25] PUEJDL K,HURÁK Z,ZEMÁNEK J. Rijke organ: modeling and control of array of Rijke tubes[J]. International Federation of Automatic Control: PapersOnLine,2020,53(2): 8866-8871.
    [26] LIU Peijin, HUANG Bin, YANG Bin, et al. TDLAS for measurement of temperature in combustion environment[R]. Xi’an: International Symposium on Laser Interaction with Matter, 2013.
  • 加载中
图(8)
计量
  • 文章访问数:  168
  • HTML浏览量:  64
  • PDF量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回