留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平衡等离子体点火助燃的研究进展

邓江革 李挺

邓江革, 李挺. 非平衡等离子体点火助燃的研究进展[J]. 航空动力学报, 2022, 37(10):2295-2309 doi: 10.13224/j.cnki.jasp.20220285
引用本文: 邓江革, 李挺. 非平衡等离子体点火助燃的研究进展[J]. 航空动力学报, 2022, 37(10):2295-2309 doi: 10.13224/j.cnki.jasp.20220285
DENG Jiangge, LI Ting. Research progress on non-equilibrium plasma-assisted ignition and combustion[J]. Journal of Aerospace Power, 2022, 37(10):2295-2309 doi: 10.13224/j.cnki.jasp.20220285
Citation: DENG Jiangge, LI Ting. Research progress on non-equilibrium plasma-assisted ignition and combustion[J]. Journal of Aerospace Power, 2022, 37(10):2295-2309 doi: 10.13224/j.cnki.jasp.20220285

非平衡等离子体点火助燃的研究进展

doi: 10.13224/j.cnki.jasp.20220285
基金项目: 国家自然科学基金重大仪器专项(61827802);国家科技重大专项(J2019-Ⅲ-0016-0060)
详细信息
    作者简介:

    邓江革(1997-),男,博士生,主要从事等离子体辅助点火和先进激光诊断研究

  • 中图分类号: V231.2;O53

Research progress on non-equilibrium plasma-assisted ignition and combustion

  • 摘要:

    从等离子体点火助燃燃烧实验、等离子体助燃的先进激光诊断和等离子体助燃机理三个方面进行概述,总结近些年来国内外对非平衡等离子体点火助燃研究的主要成果。等离子体辅助点火燃烧的最新进展有:辅助冷焰进行的燃烧学基础研究,辅助低热值燃料以及氨等的相关实验研究,等离子体强化贫燃火焰稳定性的研究,混合不同类型放电等离子体点火助燃的仿真计算以及等离子体助燃仿真新模型的建立等。认为在等离子体辅助点火燃烧技术的研究仍应以实验研究为主,积累大量实验数据和经验以支撑进一步的研发和应用;并且在实验中,应多结合不同等离子体以及不同类型等离子体的特点,充分利用其优点,使用混合放电最大化其作用效果。

     

  • 图 1  等离子体点火助燃的主要强化路径[17]

    Figure 1.  Main enhancement path for plasma-assisted ignition and combustion[17]

    图 2  等离子体炬混合介质阻挡放电[22](单位:mm)

    Figure 2.  Plasma torch mix with dielectric barrierdischarge[22] (unit:mm)

    图 3  超燃实验装置示意图

    Figure 3.  Schematic diagram of supersonic combustion experimental platform

    图 4  贫油预混CH4-空气旋流火焰(蓝色)和纳秒脉冲放电(紫色)图片[29]

    Figure 4.  Photographic representation of the burner with a lean premixed CH4-air swirl-stabilized flame (blue) and nanosecond repetitively pulsed discharges (purple) [29]

    图 5  热线风速仪测得的速度脉动[29]

    Figure 5.  Velocity measured by the hot wire[29]

    图 6  改变施加电压数码相机拍摄0.5 s曝光后的火焰图像[15]

    Figure 6.  Flame images taken by digital camera with 0.5 s exposure by varying applied voltage[15]

    图 7  对冲火焰实验台以及光学诊断手段[33]

    Figure 7.  Schematic of experimental counterflow burner setup and optical diagnostic tools[33]

    图 8  局部OH*信号强度和局部最高温度与燃料摩尔分数的关系[35]

    Figure 8.  Relationship between OH* emission intensity, local maximum temperature and fuel mole fraction[35]

    图 9  助燃激励器放电图[42]

    Figure 9.  The effect picture of the fuel actuator[42]

    图 10  三燃烧室头部旋转滑弧放电等离子体示意图[43]

    Figure 10.  Discharge display of triple gliding arc plasma-enhanced combustion domes[43]

    图 11  等离子体激励器布置[44]

    Figure 11.  Installation of plasma actuators[44]

    图 12  等离子体助燃实验台[45]

    Figure 12.  Experimental platform of the plasma-assisted combustion[45]

    图 13  DBD激励器放电[45]

    Figure 13.  Discharge display of DBD plasma actuator[45]

    图 14  不同点火能量下火核发展[46]

    Figure 14.  Development of kernel at different ignition energies[46]

    图 15  微波增强滑弧等离子体助燃实验示意图[48]

    Figure 15.  Schematic diagram of microwave enhanced gliding arc plasma assisted combustion[48]

    图 16  CARS测电场强度的原理图[51]

    Figure 16.  Principle of CARS for measuring electric field[51]

    图 17  相干拉曼散射电场测量系统示意图[52]

    Figure 17.  Schematic diagram of coherent Raman scattering electric field measurement system[52]

    图 18  Thomson散射技术示意图[55]

    Figure 18.  Schematic of Thomson scattering technique[55]

    图 19  实验和ICOS诊断系统[58]

    Figure 19.  Experimental system and ICOS diagnostic system[58]

    图 20  TALIF原子O测量[34]

    Figure 20.  TALIF for atomic O measurements[34]

    图 21  原子O测量结果图[34]

    Figure 21.  Results of atomic O measurements[34]

    图 22  火花塞点火和微波强化下点火的纹影图[9]

    Figure 22.  Schlieren images of spark ignition and spark ignition with microwave enhancement[9]

    图 23  不同E/N各分子自由度的能量分数(0.083CH4/0.167O2/0.75He) [77]

    Figure 23.  Energy fractions deposited into different molecular degrees of freedom at different E/N (0.083CH4/0.167O2/0.75He)[77]

    图 24  纳秒脉冲-直流混合放电示意图[77]

    Figure 24.  Schematic of the hybrid repetitively-pulsed nanosecond discharge and direct current discharge[77]

    图 25  计算机制简化前后结果对比[79]

    Figure 25.  Comparison of detailed and skeletal mechanism[79]

    表  1  等离子体助燃中应用主要测量内容和技术

    Table  1.   Main measurements and techniques applied in plasma-assisted combustion

    测量使用技术激发光
    波长/nm
    探测光
    波长/nm
    原子OTALIF226834.91
    OHPLIF283315
    CH*自发光430
    O3吸收光谱253.7
    O2(aIΔg)积分腔输出光谱1505
    原子HTALIF205656
    CH2OPLIF355
    CH2Omid-IR7000
    HO2法拉第旋转光谱7100
    温度瑞利散射532532
    温度CARS
    电子密度发射光谱(OES)/
    斯塔克增宽(Stark broadening)
    电子温度Thomson散射
    电场强度H2/N2 CARS
    下载: 导出CSV
  • [1] STARIKOVSKIY A,ALEKSANDROV N. Plasma-assisted ignition and combustion[J]. Progress in Energy and Combustion Science,2013,39(1): 61-110. doi: 10.1016/j.pecs.2012.05.003
    [2] STARIKOVSKII A Y. Plasma supported combustion[J]. Proceedings of the Combustion Institute,2005,30(2): 2405-2417. doi: 10.1016/j.proci.2004.08.272
    [3] STARIKOVSKAIA S M. Plasma assisted ignition and combustion[J]. Journal of Physics:D Applied Physics,2006,39(16): 265-299. doi: 10.1088/0022-3727/39/16/R01
    [4] STARIKOVSKAIA S M,STARIKOVSKII A Y. Plasma-assisted ignition and combustion[M]. Weinheim,Germany:Wiley-VCH Verlag GmbH & Co.KGaA,2010.
    [5] KIM W,SNYDER J,COHEN J. Plasma assisted combustor dynamics control[J]. Proceedings of the Combustion Institute,2015,35(3): 3479-3486. doi: 10.1016/j.proci.2014.08.025
    [6] D’ENTREMONT J,GEJJI R M,VENKATESH P B,et al. Plasma control of combustion instability in a lean direct injection gas turbine combustor[R]. National Harbor,US:52nd Aerospace Sciences Meeting,2014.
    [7] CHINTALA N,BAO A,LOU G,et al. Measurements of combustion efficiency in nonequilibrium RF plasma ignited flows[J]. Combustion and Flame,2006,144(4): 744-756. doi: 10.1016/j.combustflame.2005.08.040
    [8] STOCKMAN E S,ZAIDI S H,MILES R B,et al. Measurements of combustion properties in a microwave enhanced flame[J]. Combustion and Flame,2009,156(7): 1453-1461. doi: 10.1016/j.combustflame.2009.02.006
    [9] WOLK B,DEFILIPPO A,CHEN J Y,et al. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber[J]. Combustion and Flame,2013,160(7): 1225-1234. doi: 10.1016/j.combustflame.2013.02.004
    [10] DO H,IM R K,CAPPELLI R A,et al. Plasma assisted flame ignition of supersonic flows over a flat wall[J]. Combustion and Flame,2010,157(12): 2298-2305. doi: 10.1016/j.combustflame.2010.07.006
    [11] BARBOSA S, PILLA G, LACOSTE D, et al. Influence of a repetitively pulsed plasma on the flame stability domain of a lab-scale gas turbine combustor[R]. Vienna, Australia: Fourth European Combustion Meeting, 2009.
    [12] LEFKOWITZ J K,JU Yiguang,STEVENS C A,et al. The effects of repetitively pulsed nanosecond discharges on ignition time in a pulsed detonation engine[R]. San Jose,US:49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2013.
    [13] LEE D H,KIM K T,KANG H S,et al. Plasma-assisted combustion technology for NOx reduction in industrial burners[J]. Environmental Science and Technology,2013,47(19): 10964-10970. doi: 10.1021/es401513t
    [14] BRIESCHENK S,O’BYRNE S,KLEINE H. Laser-induced plasma ignition studies in a model scramjet engine[J]. Combustion and Flame,2013,160(1): 145-148. doi: 10.1016/j.combustflame.2012.08.011
    [15] CHA M S,LEE S M,KIM K T,et al. Soot suppression by nonthermal plasma in co-flow jet diffusion flames using a dielectric barrier discharge[J]. Combustion and Flame,2005,141(4): 438-447. doi: 10.1016/j.combustflame.2005.02.002
    [16] SONG Chonglin,BIN Feng,TAO Zemin,et al. Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges[J]. Journal of Hazardous Materials,2009,166(1): 523-530. doi: 10.1016/j.jhazmat.2008.11.068
    [17] JU Yiguang,SUN Wenting. Plasma assisted combustion:dynamics and chemistry[J]. Progress in Energy and Combustion Science,2015,48: 21-83. doi: 10.1016/j.pecs.2014.12.002
    [18] CHEN Z,JU Y. Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame[J]. Combustion Theory and Modelling,2007,11(3): 427-453. doi: 10.1080/13647830600999850
    [19] LEMPERT W R. An overview of the AFOSR plasma MURI program:fundamental mechanisms,predictive modeling,and novel aerospace applications of plasma assisted combustion[R]. Kissimmee,US:53rd AIAA Aerospace Science Meeting,2015.
    [20] ADAMOVICH I,BAALRUD S D,BOGAERTS A,et al. The 2017 plasma roadmap:low-temperature plasma science and technology[J]. Journal of Physic:D Applied Physics,2017,50(32): 1-47.
    [21] WANG Hai,YOU Xiaoqing,AMEYA V J,et al. USC Mech version Ⅱ:high-temperature combustion reaction model of H2/CO/C1-C4 compounds[EB/OL]. [2022-08-15]. http://ignis.usc.edu/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm.
    [22] MATSUBARA Y,TAKITA K,MASUYA G. Combustion enhancement in a supersonic flow by simultaneous operation of DBD and plasma jet[J]. Proceedings of the Combustion Institute,2013,34(2): 3287-3294. doi: 10.1016/j.proci.2012.07.001
    [23] LEONOV S B,YARANTSEV D A,NAPARTOVICH A P,et al. Plasma-assisted combustion of gaseous fuel in supersonic duct[J]. IEEE Transactions on Plasma Science,2006,34: 2514-2525. doi: 10.1109/TPS.2006.886089
    [24] LEONOV S B,YARANTSEV D A,CARTER C. Experiments on electrically controlled flameholding on a plane wall in a supersonic airflow[J]. Journal of Propulsion and Power,2009,25(2): 289-294. doi: 10.2514/1.38002
    [25] SAVELKIN K V,YARANTSEV D A,ADAMOVICH I V,et al. Ignition and flameholding in a supersonic combustor by an electrical discharge combined with a fuel injector[J]. Combustion and Flame,2015,162(3): 825-835. doi: 10.1016/j.combustflame.2014.08.012
    [26] LEONOV S B,HEDLUND B,HOUPT A. Morphology of quasi-direct-current discharges collocated with fuel jets in a supersonic crossflow[J]. Journal of Propulsion and Power,2020,36(16): 1-9.
    [27] LEONOV S B,ELLIOTT S,CARTER C,et al. Modes of plasma-stabilized combustion in cavity-based M = 2 configuration[J]. Experimental Thermal and Fluid Science,2021,124(14): 110355.1-110355.15.
    [28] SABATINO F D,LACOSTE D A. Enhancement of the lean stability and blow-off limits of methane-air swirl flames at elevated pressures by nanosecond repetitively pulsed discharges[J]. Journal of Physics:D Applied Physics,2020,53(35): 355201.1-355201.8.
    [29] LACOSTE D A,XU D A,MERCK J P,et al. Dynamic response of a weakly turbulent lean-premixed flame to nanosecond repetitively pulsed discharges[J]. Proceedings Combustion Institute,2013,34(2): 3259-3266. doi: 10.1016/j.proci.2012.07.017
    [30] LACOSTE D A,MOECK J P,DUROX D,et al. Effect of nanosecond repetitively pulsed discharges on the dynamics of a swirl-stabilized lean premixed flame[R]. San Antonio,US:ASME Turbo Expo:Turbine Technical Conference and Exposition,2013.
    [31] LACOSTE D A,MOECK J P,ROBERTS W L,et al. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma[J]. Proceedings of the Combustion Institute,2017,36(3): 4145-4153. doi: 10.1016/j.proci.2016.06.178
    [32] VARELLA R A,SAGÁS J C,MARTINS C A. Effects of plasma-assisted combustion on pollutant emissions of a premixed flame of natural gas and air[J]. Fuel,2016,184: 269-276. doi: 10.1016/j.fuel.2016.07.031
    [33] SUN Wenting,OMBRELLO T,WON S H,et al. Effects of non-equilibrium plasma on counterflow diffusion flames[R]. Orlando,US:48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2010.
    [34] SUN Wenting,UDDI M,OMBRELLO T,et al. Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction[J]. Proceedings of the Combustion Institute,2011,33(2): 3211-3218. doi: 10.1016/j.proci.2010.06.148
    [35] SUN Wenting,WON S H,JU Yiguang,et al. Direct ignition and s-curve transition by in situ nano-second pulsed discharge in methane/oxygen/helium counterflow flame[J]. Proceedings of the Combustion Institute,2013,34(1): 847-855. doi: 10.1016/j.proci.2012.06.104
    [36] REUTER C B,WON S H,JU Yiguang. Experimental study of the dynamics and structure of self-sustaining premixed cool flames using a counterflow burner[J]. Combustion and Flame,2016,166(sup.): 125-132.
    [37] REUTER C B,WON S H,JU Yiguang. Flame structure and ignition limit of partially premixed cool flames in a counterflow burner[J]. Proceedings of the Combustion Institute,2017,16(1): 1513-1522.
    [38] REUTER C B,KATTA V R,YEHIA O R,et al. Transient interactions between a premixed double flame and a vortex[J]. Proceedings of the Combustion Institute,2019,37(2): 1851-1859. doi: 10.1016/j.proci.2018.07.050
    [39] NOVOSELOV A G,REUTER C B,YEHIA O R,et al. Turbulent nonpremixed cool flames: experimental measurements, direct numerical simulation, and manifold-based combustion modeling[J]. Combustion and Flame,2019,209: 144-154. doi: 10.1016/j.combustflame.2019.07.034
    [40] JU Yiguang,REUTER C B,YEHIA O R,et al. Dynamics of cool flames[J]. Progress in Energy and Combustion Science,2019,75: 100787.1-100787.39.
    [41] CHOE J,SUN Wenting,OMBRELLO T,et al. Plasma assisted ammonia combustion:Simultaneous NOx reduction and flame enhancement[J]. Combustion and Flame,2021,228(1): 430-432.
    [42] 费力,张磊,何立明,等. 环境压力对滑动弧放电等离子体助燃激励器特性的影响研究[J]. 高压电器,2019,55(7): 127-134. doi: 10.13296/j.1001-1609.hva.2019.07.019

    FEI Li,ZHANG Lei,HE Liming,et al. Investigation on the influence of environmental pressure on the gliding arc discharge plasma actuator combustion characteristics[J]. High Voltage Apparatus,2019,55(7): 127-134. (in Chinese) doi: 10.13296/j.1001-1609.hva.2019.07.019
    [43] 胡长淮,何立明,陈一,等. 燃烧室头部激励的等离子体强化燃烧特性实验研究[J]. 推进技术,2021,42(12): 2762-2771. doi: 10.13675/j.cnki.tjjs.200346

    HU Changhuai,HE Liming,CHEN Yi,et al. Experimental research on characteristics of plasma-enhanced combustion excited by combustor dome[J]. Journal of Propulsion Technology,2021,42(12): 2762-2771. (in Chinese) doi: 10.13675/j.cnki.tjjs.200346
    [44] FEI Li,ZHAO Bingbing,CHEN Yi,et al. Rotating gliding arc discharge plasma-assisted combustion from ignition hole[J]. Experimental Thermal and Fluid Science,2021,129: 110473.1-110473.12.
    [45] CHEN Yi,HE Liming,FEI Li,et al. Experimental study of dielectric barrier discharge plasma-assisted combustion in an aero-engine combustor[J]. Aerospace Science and Technology,2020,99: 105765.1-105765.10.
    [46] YANG Leichao,AN Bin,LI Xipeng,et al. Characterization of successive laser induced plasma ignition in an ethylene fuelled model scramjet engine[R]. Xiamen,China:21st AIAA International Space Planes and Hypersonics Technologies Conference,2017.
    [47] YANG Leichao,AN Bin,LIANG Jianhan,et al. Dual-pulse laser ignition of ethylene-air mixtures in a supersonic combustor[J]. Optics Express,2018,26(7): 7911-7919. doi: 10.1364/OE.26.007911
    [48] 孟宇,顾洪斌,孙文明,等. 微波增强滑移电弧等离子体辅助超声速燃烧[J]. 航空学报,2020,41(2): 124-131.

    MENG Yu,GU Hongbin,SUN Wenming,et al. Microwave enhanced gliding arc plasma assisted supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica,2020,41(2): 124-131. (in Chinese)
    [49] 周思引,聂万胜,车学科,等. 非平衡等离子体对甲烷–氧扩散火焰影响的实验研究[J]. 力学学报,2019,51(5): 1336-1349. doi: 10.6052/0459-1879-19-149

    ZHOU Siyin,NIE Wansheng,CHE Xueke,et al. Experiment study of effect of nonequilibrium plasma on methane-oxygen diffusive flame[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(5): 1336-1349. (in Chinese) doi: 10.6052/0459-1879-19-149
    [50] GAVRILENKO V P,KUPRIYANOVA E B,OKOLOKULAK D P,et al. Generation of coherent IR light on a dipole-forbidden molecular transition with biharmonic pumping in a static electric field[J]. JETP Letters,1992,56: 1-4.
    [51] YATOM S,TSKHAI S,KRASIK Y E. Electric field in a plasma channel in a high-pressure nanosecond discharge in hydrogen:a coherent anti-stokes raman scattering study[J]. Physical Review Letters,2013,111(25): 255001.1-255001.5.
    [52] ITO T,KOBAYASHI K,MUELLER S,et al. Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen[J]. Journal of Physics:D Applied Physics,2009,42(9): 92003-92006. doi: 10.1088/0022-3727/42/9/092003
    [53] LEMPERT W R,KEARNEY S P,BARNAT E V. Diagnostic study of four-wave-mixing-based electric-field measurements in high-pressure nitrogen plasmas[J]. Applied Optics,2011,50(29): 5688-5694. doi: 10.1364/AO.50.005688
    [54] CRINTEA D L,LUGGENHÖLSCHER D,KADETOV V A,et al. Phase-resolved measurement of anisotropic electron velocity distribution functions in a radio-frequency discharge[J]. Journal of Physics:D Applied Physics,2008,41(8): 1577-1582.
    [55] ROETTGEN A M,SHKURENKOV I,ADAMOVICH I V,et al. Thomson scattering studies in He and He/H2 nanosecond pulse nonequilibrium plasmas[R]. National Harbor,US:52nd Aerospace Sciences Meeting,2014.
    [56] SAINCT F P,URABE K,PANNIER E,et al. Electron number density measurements in nanosecond repetitively pulsed discharges in water vapor at atmospheric pressure[J]. Plasma Sources Science and Technology,2020,29(2): 025017.1-025017.8.
    [57] OMBRELLO T,WON SH,JU Yiguang,et al. Flame propagation enhancement by plasma excitation of oxygen:part I effects of O3[J]. Combustion and Flame,2010,157(10): 1906-1915. doi: 10.1016/j.combustflame.2010.02.005
    [58] OMBRELLO T,WON SH,JU Yiguang,et al. Flame propagation enhancement by plasma excitation of oxygen:part Ⅱ effects of O2(a1Δg)[J]. Combustion and Flame,2010,157(10): 1916-1928. doi: 10.1016/j.combustflame.2010.02.004
    [59] NIEMI K,GATHEN S V D,DOBELE H F. Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology,2005,14(2): 375-386. doi: 10.1088/0963-0252/14/2/021
    [60] YIN Z,ECKERT Z,ADAMOVICH I V,et al. Time-resolved radical species and temperature distributions in an Ar−O2−H2 mixture excited by a nanosecond pulse discharge[J]. Proceedings of the Combustion Institute,2015,35(3): 3455-3462. doi: 10.1016/j.proci.2014.05.073
    [61] YIN Z,MONTELLO A,LEMPERT W R,et al. Measurements of temperature and hydroxyl radical generation/decay in lean fuel-air mixtures excited by a repetitively pulsed nanosecond discharge[R]. AIAA 2012-3182,2012.
    [62] YIN Z,ADAMOVICH I V,LEMPERT W R. OH radical and temperature measurements during ignition of H2-air mixtures excited by a repetitively pulsed nanosecond discharge[J]. Proceedings of the Combustion Institute,2012,34(2): 3249-3258.
    [63] WU L,LANE J,CERNANSKY N P,et al. Plasma-assisted ignition below self-ignition threshold in methane, ethane, propane, and butane-air mixtures[J]. Proceedings of the Combustion Institute,2011,33(2): 3219-3224. doi: 10.1016/j.proci.2010.06.003
    [64] BRACKMANN C,NYGREN J,BAI X,et al. Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation[J]. Molecular and Biomolecular Spectroscopy,2003,59(14): 3347-3356. doi: 10.1016/S1386-1425(03)00163-X
    [65] METZ T,BAI Xiao,OSSLER F,et al. Fluorescence lifetimes of formaldehyde (H2CO) in the Ã1A2→X̃1A1 band system at elevated temperatures and pressures[J]. Molecular and Biomolecular Spectroscopy,2004,60(4): 1043-1053.
    [66] LEFKOWITZ J,WINDOM B C,MACDONALD W,et al. Time dependent measurements of species formation in nanosecond-pulsed plasma discharges in C2H4/O2/Ar mixtures[R]. National Harbor,US:52nd Aerospace Sciences Meeting,2014.
    [67] SUN Wenting,UDDI M,SANG H W,et al. Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits[J]. Combustion and Flame,2012,159(1): 221-229. doi: 10.1016/j.combustflame.2011.07.008
    [68] SHEN Xiaobo,YANG Xueliang,SANTNER J,et al. Experimental and kinetic studies of acetylene flames at elevated pressures[J]. Proceedings of the Combustion Institute,2015,35(1): 721-728. doi: 10.1016/j.proci.2014.05.106
    [69] ARIC R,MAO Xingqian,CHEN Q,et al. Kinetic studies and mechanism development of plasma assisted pentane combustion[J]. Proceedings of the Combustion Institute,2018,37(4): 5595-5603.
    [70] ZHONG Hongtao,YAN Chao,TENG Chuc,et al. Kinetic studies of excited singlet oxygen atom O(1D) reactions with ethanol[J]. International Journal of Chemical Kinetics,2021,53: 688-701. doi: 10.1002/kin.21474
    [71] POPOV N A. Effect of singlet oxygen O2(a1Δg) molecules produced in a gas discharge plasma on the ignition of hydrogen-oxygen mixtures[J]. Plasma Sources Science and Technology,2011,20(4): 045002.1-045002.11.
    [72] SUN Wenting,GAO Xiang,WU Bin,et al. The effect of ozone addition on combustion:kinetics and dynamics[J]. Progress in Energy and Combustion Science,2019,73: 1-25. doi: 10.1016/j.pecs.2019.02.002
    [73] ZHAO Hongtao,LIU Shixiang,YAN Chao,et al. Studies of ozone-sensitized low- and high-temperature oxidations of diethyl carbonate[J]. The Journal of Physical Chemistry A,2021,125(8): 1760-1765. doi: 10.1021/acs.jpca.0c09002
    [74] OMBRELLO T,JU Yiguang,Fridman A. Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma[J]. AIAA Journal,2008,46(10): 2424-2433. doi: 10.2514/1.33005
    [75] ZHANG T,JU Yiguang. NO effects on detonation formation in n-pentane/air mixtures with temperature gradients[R]. Virtual:2021 AIAA Science and Technology Forum and Exposition,2021.
    [76] ADAMOVICH I V,CHOI I,JIANG N,et al. Plasma assisted ignition and high-speed flow control:non-thermal and thermal effects[J]. Plasma Sources Science and Technology,2009,18(3): 034018.1-034018.13.
    [77] MAO Xingqian,ROUSSO A,CHEN Qi,et al. Numerical modeling of ignition enhancement of CH4/O2/He mixtures using a hybrid repetitive nanosecond and DC discharge[J]. Proceedings of the Combustion Institute,2019,37(4): 5545-5552. doi: 10.1016/j.proci.2018.05.106
    [78] BELLEMANS A,DEAK N E,BISETTI F. Skeletal chemical kinetics mechanisms for plasma-assisted combustion[R]. Orlando,US:2020 AIAA Science and Technology Forum and Exposition,2020.
    [79] BELLEMANS A,KINCAID N,DEAK N,et al. P-DRGEP:a novel methodology for the reduction of kinetics mechanisms for plasma-assisted combustion applications[J]. Proceedings of the Combustion Institute,2020,38(4): 6631-6639.
    [80] 郑洪涛,张志浩,刘潇,等. 低热值燃料燃烧室等离子点火特性[J]. 哈尔滨工程大学学报,2020,41(6): 846-852. doi: 10.11990/jheu.201810015

    ZHENG Hongtao,ZHANG Zhihao,LIU Xiao,et al. Plasma ignition characteristics of micro-gas turbine combustor burning low-calorific-value fuel[J]. Journal of Harbin Engineering University,2020,41(6): 846-852. (in Chinese) doi: 10.11990/jheu.201810015
    [81] 游滨川,刘潇,刘倩,等. 燃料重整对环管燃烧室燃烧特性的影响[J]. 哈尔滨工程大学学报,2020,41(12): 1811-1818. doi: 10.11990/jheu.201909040

    YOU Binchuan,LIU Xiao,LIU Qian,et al. The effect of gas fuel reforming on the combustion characteristics of the can annular combustor[J]. Journal of Harbin Engineering University,2020,41(12): 1811-1818. (in Chinese) doi: 10.11990/jheu.201909040
    [82] 杨锐,游滨川,刘潇,等. 滑动弧裂解CO2机理[J]. 气体物理,2022,7(1): 53-62.

    YANG Rui,YOU Binchuan,LIU Xiao,et al. Mechanism of CO2 cracking by gliding arc[J]. Physics of Gases,2022,7(1): 53-62. (in Chinese)
    [83] 余涛,杨家龙,刘潇,等. 射流等离子发生器实验与模拟[J]. 气体物理,2022,7(1): 70-78. doi: 10.19527/j.cnki.2096-1642.0882

    YU Tao,YANG Jialong,Liu Xiao,et al. Experiment and simulation of plasma jet generator[J]. Physics of Gases,2022,7(1): 70-78. (in Chinese) doi: 10.19527/j.cnki.2096-1642.0882
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  285
  • HTML浏览量:  68
  • PDF量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 网络出版日期:  2022-09-14

目录

    /

    返回文章
    返回