留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同雾化特性下燃烧室贫油熄火特性试验

王惜伟 黄勇 刘云峰 邬雨帆 王洪妍

王惜伟, 黄勇, 刘云峰, 等. 不同雾化特性下燃烧室贫油熄火特性试验[J]. 航空动力学报, 2022, 37(11):2501-2512 doi: 10.13224/j.cnki.jasp.20220286
引用本文: 王惜伟, 黄勇, 刘云峰, 等. 不同雾化特性下燃烧室贫油熄火特性试验[J]. 航空动力学报, 2022, 37(11):2501-2512 doi: 10.13224/j.cnki.jasp.20220286
WANG Xiwei, HUANG Yong, LIU Yunfeng, et al. Experiment on lean blow-out performance of combustors with different atomization characteristics[J]. Journal of Aerospace Power, 2022, 37(11):2501-2512 doi: 10.13224/j.cnki.jasp.20220286
Citation: WANG Xiwei, HUANG Yong, LIU Yunfeng, et al. Experiment on lean blow-out performance of combustors with different atomization characteristics[J]. Journal of Aerospace Power, 2022, 37(11):2501-2512 doi: 10.13224/j.cnki.jasp.20220286

不同雾化特性下燃烧室贫油熄火特性试验

doi: 10.13224/j.cnki.jasp.20220286
基金项目: 国家科技重大专项(2017-Ⅲ-0007-0032);重点实验室基金(6142702180306)
详细信息
    作者简介:

    王惜伟(1995-),男,博士生,主要从事航空发动机贫油点熄火机理研究

    通讯作者:

    黄勇 (1964-),男,教授、博士生导师,博士,主要从事燃油雾化及燃烧室点熄火机理研究。E-mail: yhuang@buaa.edu.cn

  • 中图分类号: V231.2

Experiment on lean blow-out performance of combustors with different atomization characteristics

  • 摘要:

    为了研究雾化特性对贫油熄火性能的影响,对喷雾火焰进行了试验研究。在双轴向和双径向旋流器燃烧室中,分别测量了不同喷嘴的熄火极限和出口温度,并估算了燃烧效率。结果表明:①不同结构和喷嘴的燃烧室熄火性能有很大差异,双径向燃烧室的熄火性能普遍优于双轴向;②雾化特性中的索太尔平均直径、液滴速度、喷雾空间分布等参数都影响着贫油熄火极限,仅靠索太尔平均直径无法代表所有雾化特性对贫油熄火性能的影响;③空心喷雾使得火焰根部远离回流区,实心喷雾使得火焰根部集中在回流区;④不同雾化特性的燃烧室在接近贫油熄火时的燃烧效率和出口温度有很大不同。熄火时的出口温度代表了理想的贫油熄火极限。燃烧效率反映了燃烧室实际贫油熄火极限与理想熄火极限之间的差距。

     

  • 图 1  熄火试验系统及测量系统示意图

    Figure 1.  Schematic diagram of the blow-out test system and diagnostic system

    图 2  双轴向/双径向旋流杯结构示意图

    Figure 2.  Configuration of dual-axial/dual-radial domes

    图 3  马尔文粒度分析仪

    Figure 3.  Malvern spray analyzer

    图 4  相同空气流量下的LBO性能

    Figure 4.  LBO conditions at constant mass flow rate of air

    图 5  LBO工况下的油气比和SMD

    Figure 5.  Fuel air ratio and SMD at LBO conditions

    图 6  喷雾图像处理过程

    Figure 6.  Processing of spray images

    图 7  双轴向燃烧室接近LBO极限时的液滴空间分布

    Figure 7.  Spray droplet spatial distributions of dual-axial combustors near the LBO limits

    图 8  双径向燃烧室接近LBO极限时的液滴空间分布

    Figure 8.  Spray droplet spatial distributions of dual-radial combustors near the LBO limits

    图 9  接近LBO极限时的双轴向与双径向火焰形态对比

    Figure 9.  Comparisons of flame pattern in the case of dual-axial and dual-radial near LBO limits

    图 10  双轴向与双径向燃烧室火焰稳定根部示意图

    Figure 10.  Schematic of flame stabilization base for dual-axial and dual-radial combustors

    图 11  LBO工况下的油气比与出口温度

    Figure 11.  Fuel air ratio and outlet temperature at LBO conditions

    图 12  LBO工况下的油气比与燃烧效率

    Figure 12.  Fuel air ratio and combustion efficiency at LBO conditions

    图 13  LBO性能与燃烧效率的关系

    Figure 13.  Relationship between LBO performance and combustion efficiency

    图 14  雾化特性对LBO性能影响示意图

    Figure 14.  Schematic of effect of atomization on LBO performance

    表  1  燃烧室编号

    Table  1.   Combustor number

    燃烧室编号旋流器喷嘴序号
    A1双轴向1
    A2双轴向2
    A3双轴向3
    A4双轴向4
    A5双轴向5
    A8双轴向8
    R1双径向1
    R6双径向6
    R7双径向7
    R8双径向8
    R9双径向9
    下载: 导出CSV

    表  2  燃烧室详细尺寸参数

    Table  2.   Detailed configuration parameters of the combustors

    部件参数双轴向旋流杯 参数双径向旋流杯
    一级旋流器二级旋流器一级旋流器二级旋流器
    旋流器Dout/mm2634.5 B/mm5.17
    Din/mm1928 θb/(°)6470
    θb/(°)4045 δ/mm1.21.2
    δ/mm11 R/mm12.515
    Ae/mm2147.5186.6 Ae/mm2146.7190.7
    n1212 n1212
    Sn0.9921.126 Sn1.091.25
    文氏管d/mm18.5 d/mm13
    套筒θ/(°)45 θ/(°)45
    下载: 导出CSV

    表  3  试验所用喷嘴

    Table  3.   Atomizer used in the experiment

    喷嘴序号参考体积流量/
    (USgal/h)
    参考喷雾锥角/
    (°)
    形态
    12.0080实心
    22.5080实心
    33.0045实心
    43.0080实心
    53.5045实心
    63.5060实心
    74.0060实心
    84.5060实心
    95.0060实心
    下载: 导出CSV

    表  4  不同燃烧室平均LBO极限和方均根误差

    Table  4.   Average LBO limits and RMS errors of different combustors

    燃烧室
    编号
    熄火时喷嘴
    压力降/kPa
    qlboqlbo方均根
    误差
    A1345.90.0114090.000096
    A2309.60.0140290.000102
    A3222.30.0140580.000062
    A4202.70.0133250.000057
    A5174.00.0145410.000053
    A8192.20.0222340.000082
    R1144.80.0074030.000107
    R650.40.0079250.000057
    R744.00.0080050.000076
    R843.10.0106120.000049
    R934.90.0104380.000108
    下载: 导出CSV
  • [1] ZHANG Zhichao,CHEN Longfei,LU Yiji,et al. Lean ignition and blow-off behaviour of butyl butyrate and ethanol blends in a gas turbine combustor[J]. Fuel,2019,239(1): 1351-1362.
    [2] KUMAR A, CHATTERJEE K, MUKHOPADHYAY A, et al. Experimental characterization of premixed flame in gas turbine combustor with spectroscopy and RGB analysis[R]. Mumbai, India: ASME 2012 Gas Turbine India Conference, 2012.
    [3] JIN Yi,HE Xiaomin,ZHANG Jingyu,et al. Experimental study on emission performance of an LPP/TVC[J]. Chinese Journal of Aeronautics,2012,25(3): 335-341. doi: 10.1016/S1000-9361(11)60394-4
    [4] LEFEBVRE A H. Gas turbine combustion[M]. New York, US: McGraw-Hill Book Company, 1983.
    [5] MANAMPATHY G, GIRIDHARA G, MONGIA H C, et al. Swirl cup modeling: Part Ⅷ spray combustion in CFM-56 single cup flame tube[R]. AIAA-2003-0319, 2003.
    [6] POLYMEROPOULOS C E,DAS S. The effect of droplet size on the burning velocity of kerosene-air sprays[J]. Combustion and Flame,1975,25(1): 247-257.
    [7] ALSULAMI R,WINDELL B,NATES S,et al. Investigating the role of atomization on flame stability of liquid fuels in an annular spray burner[J]. Fuel,2020,265(1): 116945.1-116945.11.
    [8] GONG J S,FU W B. The experimental study on the flow characteristics for a swirling gas-liquid spray atomizer[J]. Applied Thermal Engineering,2007,27(17): 2886-2892.
    [9] WAGNER H G. Soot formation in combustion[J]. Symposium (International) on Combustion,1979,17(1): 3-19. doi: 10.1016/S0082-0784(79)80005-3
    [10] BAXTER M R,LEFEBVRE A H. Weak extinction limits of large scale flame holders[J]. Journal of Engineering for Gas Turbines and Power,1992,114(4): 776-782. doi: 10.1115/1.2906656
    [11] STURGESS G J,HENEGHAN S P,VANGSNESS M D,et al. Effects of back-pressure in a lean blow-out research combustor[J]. Journal of Engineering for Gas Turbines and Power,1993,115(3): 486-498. doi: 10.1115/1.2906735
    [12] LIEUWEN T,MCDONELL V,PETERSEN E,et al. Fuel flexibility influences on premixed combustor blow-out, flashback, auto ignition and stability[J]. Journal of Engineering for Gas Turbines and Power,2008,130(1): 011506.1-011506.10.
    [13] HAYASHI S,KUMAGAI S. Flame propagation in fuel droplet-vapor-air mixtures[J]. Symposium on Combustion,1975,15(1): 445-452. doi: 10.1016/S0082-0784(75)80318-3
    [14] MIZUTANI Y,NAKAJIMA A. Combustion of fuel vapor-drop-air systems: Part Ⅱ spherical flames in a vessel[J]. Combustion and Flame,1973,20(3): 351-357. doi: 10.1016/0010-2180(73)90027-8
    [15] MIZUTANI Y,NAKAJIMA A. Combustion of fuel vapor-drop-air systems: Part Ⅰ open burner flames[J]. Combustion and Flame,1973,20(3): 343-350. doi: 10.1016/0010-2180(73)90026-6
    [16] LEVY Y,BULZAN D L. On the oscillation of combustion of a laminar spray[J]. Combustion and Flame,1995,100(4): 543-549. doi: 10.1016/0010-2180(94)00135-F
    [17] NICOLI C,HALDENWANG P,SUARD S. Effect of substituting fuel spray for fuel gas on flame stability in lean pre-mixtures[J]. Combustion and Flame,2007,149(3): 295-313. doi: 10.1016/j.combustflame.2006.12.018
    [18] MUTHUSELVAN G,SURYANARAYANA R M,IYENGAR V S,et al. Effect of atomization quality on lean blow-out limits and acoustic oscillations in a swirl stabilized burner[J]. Combustion Science and Technology,2019,192(6): 1028-1052.
    [19] DUVVUR A,CHAING C H,SIRIGNANO W A. Oscillatory fuel droplet vaporization: driving mechanism for combustion instability[J]. Journal of Propulsion and Power,1996,12(2): 358-365. doi: 10.2514/3.24036
    [20] LIU Cunxi,LIU Fuqiang,YANG Jinhu,et al. Investigations of the effects of spray characteristics on the flame pattern and combustion stability of a swirl-cup combustor[J]. Fuel,2015,139(1): 529-536.
    [21] ESCLAPEZ L, MA P C, MAYHEW E, et al. Large-eddy simulations of fuel effect on gas turbine lean blow-out[R]. AIAA 2017-1955, 2017.
    [22] SUN Lei,HUANG Yong,LIU Zhilin,et al. Investigation of effect of atomization performance on lean blowout limit for gas turbine combustors by comparison of utilizing aviation kerosene and methane as fuel[J]. International Journal of Turbo and Jet-Engines,2021,40(1): 1-10.
    [23] MISHRA R K,KUMAR S K,CHANDEL S. Effect of fuel particle size on the stability of swirl stabilized flame in a gas turbine combustor[J]. International Journal of Turbo and Jet-Engines,2015,32(2): 129-141.
    [24] MISHRA R K,KUMAR S K,CHANDEL S. Effect of spray cone angle on flame stability in an annular gas turbine combustor[J]. International Journal of Turbo and Jet-Engines,2016,33(1): 35-44.
    [25] MAYHEW E, MITSINGAS C M, MCGANN B, et al. Spray characteristics and flame structure of Jet A and alternative jet fuels[R]. AIAA 2017-0148,2017.
    [26] LEFEBVRE A H. Fuel effects on gas turbine combustion: ignition,stability, and combustion efficiency[J]. Journal of Engineering for Gas Turbines and Power,1985,107(1): 24-37. doi: 10.1115/1.3239693
    [27] STOHR M,BOXX I,CARTER C,et al. Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor[J]. Proceedings of the Combustion Institute,2011,33(2): 2953-2960. doi: 10.1016/j.proci.2010.06.103
    [28] LONGWELL J P,FROST E E,WEISS M A. Flame stability in bluff body recirculation zones[J]. Industrial and Engineering Chemistry,1953,45(8): 1629-1633. doi: 10.1021/ie50524a019
    [29] MUTHUSELVAN G,SURYANARAYANA R M,IYENGAR V S,et al. Effect of lean primary-zone operation on emissions and stability of non-premixed combustors[J]. Journal of Propulsion and Power,2021,37(1): 47-58. doi: 10.2514/1.B37942
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  153
  • HTML浏览量:  35
  • PDF量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回