留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两级旋流数对中心分级贫油直喷燃烧室流动特性的影响

周韬 李锋 赵凯 王可夫 王多

周韬, 李锋, 赵凯, 等. 两级旋流数对中心分级贫油直喷燃烧室流动特性的影响[J]. 航空动力学报, 2022, 37(11):2488-2500 doi: 10.13224/j.cnki.jasp.20220290
引用本文: 周韬, 李锋, 赵凯, 等. 两级旋流数对中心分级贫油直喷燃烧室流动特性的影响[J]. 航空动力学报, 2022, 37(11):2488-2500 doi: 10.13224/j.cnki.jasp.20220290
ZHOU Tao, LI Feng, ZHAO Kai, et al. Effect of swirl numbers on flow characteristics of a concentric staged lean direct injection combustor[J]. Journal of Aerospace Power, 2022, 37(11):2488-2500 doi: 10.13224/j.cnki.jasp.20220290
Citation: ZHOU Tao, LI Feng, ZHAO Kai, et al. Effect of swirl numbers on flow characteristics of a concentric staged lean direct injection combustor[J]. Journal of Aerospace Power, 2022, 37(11):2488-2500 doi: 10.13224/j.cnki.jasp.20220290

两级旋流数对中心分级贫油直喷燃烧室流动特性的影响

doi: 10.13224/j.cnki.jasp.20220290
基金项目: 国家科技重大专项(MJ2017D30, 2017-Ⅲ-0002-0026, 2017-Ⅲ-0006-0031)
详细信息
    作者简介:

    周韬(1993-),男,博士生,主要从事航空发动机低污染燃烧技术研究

    通讯作者:

    李锋(1966-),男,教授、博士生导师,博士,主要从事航空发动机动态燃烧理论及其测试技术研究。E-mail:lifeng1966@buaa.edu.cn

  • 中图分类号: V231.2

Effect of swirl numbers on flow characteristics of a concentric staged lean direct injection combustor

  • 摘要:

    在一种中心分级贫油直喷燃烧室中,对主燃级和预燃级旋流数影响流动特性的规律进行了数值模拟研究。采用了不同参考截面上的旋流数来衡量两级旋流强度。结果表明,预燃级出口旋流数Sv增大导致主回流区最大宽度和最大回流率的增大。使主回流区回流强度显著增强的Sv阈值在0.6~0.64之间。主燃级旋流在主回流区涡心上游带动主回流区径向扩张,但主燃级旋流在下游会抑制主回流区,导致回流率的降低。燃级气流通道出口旋流数Sn从0.46增大到0.60时流动特性变化较为明显。相对旋流叶片出口截面的旋流数来说,SvSn可以较好地衡量两级旋流强度等级。

     

  • 图 1  旋流器及燃烧室示意图(单位:mm)

    Figure 1.  Schematic of swirler and combustor (unit:mm)

    图 2  不同网格方案速度型比较

    Figure 2.  Velocity radial profiles of different mesh schemes

    图 3  数值模拟结果与实验数据在不同位置的轴向速度与切向速度对比

    Figure 3.  Computed axial velocities and tangential velocities at various locations compared with measurements

    图 4  不同公式得到的旋流数

    Figure 4.  Swirl numbers by different formulas

    图 5  主燃级旋流出口旋流数(Sm)与气流通道出口旋流数(Sn)随非旋比例的变化

    Figure 5.  Swirl numbers at swirl flow outlet (Sm) and the air passage outlet (Sn) on main stage vary with non-swirling ratio

    图 6  不同预燃级旋流数下的轴向速度零等值线

    Figure 6.  Isolines with zero axial velocity of different pilot stage swirl numbers

    图 7  不同预燃级旋流数下的回流率分布

    Figure 7.  Reserve flow rate distributions with different pilot stage swirl numbers

    图 8  不同预燃级旋流数下轴向速度分布

    Figure 8.  Radial profiles of axial velocity with different pilot stage swirl numbers

    图 9  不同预燃级旋流数下径向速度分布

    Figure 9.  Radial profiles of radial velocity with different pilot stage swirl numbers

    图 10  不同预燃级旋流数下y-z平面二维涡量云图和二维流线

    Figure 10.  Two-dimensional vorticity contours and two-dimensional streamlines of y-z planes with different pilot stage swirl numbers

    图 11  不同预燃级旋流数下x-y平面二维涡量云图和二维流线

    Figure 11.  Two-dimensional vorticity contours and two-dimensional streamlines of x-y planes with different pilot stage swirl numbers

    图 12  不同Sm下的轴向速度零等值线

    Figure 12.  Isolines with zero axial velocity of different Sm

    图 13  不同Sn下的轴向速度零等值线

    Figure 13.  Isolines with zero radial velocity of different Sn

    图 14  不同Sm下的回流率分布

    Figure 14.  Reserve flow rate distributions with different Sm

    图 15  不同Sn下的回流率分布

    Figure 15.  Reserve flow rate distributions with different Sn

    图 16  不同Sm下轴向速度分布

    Figure 16.  Radial profiles of axial velocity with different Sm

    图 17  不同Sn下轴向速度分布

    Figure 17.  Radial profiles of axial velocity with different Sn

    图 18  不同Sm下径向速度分布

    Figure 18.  Radial profiles of radial velocity with different Sm

    图 19  不同Sn下径向速度分布

    Figure 19.  Radial profiles of radial velocity with different Sn

    图 20  不同Smy-z平面二维涡量云图和二维流线

    Figure 20.  Two-dimensional vorticity contours and two-dimensional streamlines of y-z planes with different Sm

    图 21  不同Smx-y平面二维涡量云图和二维流线

    Figure 21.  Two-dimensional vorticity contours and two-dimensional streamlines of x-y planes with different Sm

    图 22  不同Sny-z平面二维涡量云图和二维流线

    Figure 22.  Two-dimensional vorticity contours and two-dimensional streamlines of y-z planes with different Sn

    图 23  不同Snx-y平面二维涡量云图和二维流线

    Figure 23.  Two-dimensional vorticity contours and two-dimensional streamlines of x-y planes with different Sn

    表  1  网格方案节点数

    Table  1.   Nodes quantities of mesh schemes

    方案节点数/106
    M111.0
    M27.0
    M35.9
    M45.5
    下载: 导出CSV
  • [1] LEFEBVRE A H,BALLAL D R. Gas turbine combustion:alternative fuels and emissions[M]. Boca Raton,US:CRC press,2010.
    [2] LILLEY D G. Swirl flows in combustion:a review[J]. AIAA Journal,1977,15(8): 1063-1078. doi: 10.2514/3.60756
    [3] LI G,ANGIER S,LAMBOLEZ O,et al. Experimental study of velocity flow field for a multiple swirl spray combustor[R]. Reno,US:40th AIAA Aerospace Sciences Meeting and Exhibit,2002.
    [4] AL-ABDELI Y M,MASRI A R. Stability characteristics and flowfields of turbulent non-premixed swirling flames[J]. Combustion Theory and Modelling,2003,7(4): 731-766. doi: 10.1088/1364-7830/7/4/007
    [5] HUANG Ying,YANG V. Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor[J]. Proceedings of the Combustion Institute,2005,30(2): 1775-1782. doi: 10.1016/j.proci.2004.08.237
    [6] BA LAKRISHNAN P,SRINIVASAN K. Influence of swirl number on jet noise reduction using flat vane swirlers[J]. Aerospace Science and Technology,2018,73: 256-268. doi: 10.1016/j.ast.2017.11.039
    [7] FU Yongqiang,JENG S M,TACINA R. Characteristics of the swirling flow generated by an axial swirler[R]. ASME GT-2005-68728,2005.
    [8] 吴垚锃,黄勇,王方,等. 不同结构多点喷射燃烧室冷态流场研究[J]. 航空动力学报,2010,25(7): 1536-1544. doi: 10.13224/j.cnki.jasp.2010.07.017

    WU Yaozeng,HUANG Yong,WANG Fang,et al. Investigation of cold flow field of a multi-injection combustor with different geometries[J]. Journal of Aerospace Power,2010,25(7): 1536-1544. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.07.017
    [9] FAROKHI S,TAGHAVI R,RICE E J. Effect of initial swirl distribution on the evolution of a turbulentjet[J]. AIAA Journal,1989,27(6): 700-706. doi: 10.2514/3.10168
    [10] LIANG Hanzhuang,MAXWORTHY T. An experimental investigation of swirling jets[J]. Journal of Fluid Mechanics,2005,525: 115-159. doi: 10.1017/S0022112004002629
    [11] TOH I K,HONNERY D,SORIA J. Axial plus tangential entry swirling jet[J]. Experiments in Fluids,2010,48(2): 309-325. doi: 10.1007/s00348-009-0734-2
    [12] İLBAŞ M,KARYEYEN S,YILMAZ İ. Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor[J]. International Journal of Hydrogen Energy,2016,41(17): 7185-7191. doi: 10.1016/j.ijhydene.2015.12.107
    [13] NICKOLAUS D A,CROCKER D S,BLACK D L,et al. Development of a lean direct fuel injector for low emission aero gas turbines[R]. ASME GT-2002-30409, 2002.
    [14] MONGIA H,AL-ROUB M,DANIS A,et al. Swirl cup modeling: Ⅰ[R]. Salt Lake City,US:37th Joint Propulsion Conference and Exhibit,2001.
    [15] LIU Yize,SUN Xiaoxiao,SETHI V,et al. Review of modern low emissions combustion technologies for aero gas turbine engines[J]. Progress in Aerospace Sciences,2017,94: 12-45. doi: 10.1016/j.paerosci.2017.08.001
    [16] 闫东博,张群,汪玉明,等. 双级轴向旋流器性能评估方法:(一)综合旋流强度的影响[J]. 航空动力学报,2017,32(7): 1592-1598.

    YAN Dongbo,ZHANG Qun,WANG Yuming,et al. Performance evaluation methods of two-stage axial swirler:Ⅰ influence of total swirling intensity[J]. Journal of Aerospace Power,2017,32(7): 1592-1598. (in Chinese)
    [17] 赵自强,何小民,丁国玉,等. 旋流数组合对三级旋流流场的影响[J]. 推进技术,2016,37(10): 1909-1915. doi: 10.13675/j.cnki.tjjs.2016.10.014

    ZHAO Ziqiang,HE Xiaoming,DING Guoyu,et al. Effects of swirl number combinations on flow characteristics of triple-swirlers[J]. Journal of Propulsion Technology,2016,37(10): 1909-1915. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.10.014
    [18] 赵自强,何小民,丁国玉,等. 外旋流器旋流数对三级旋流流场特性的影响[J]. 航空动力学报,2017,32(2): 306-313. doi: 10.13224/j.cnki.jasp.2017.02.007

    ZHAO Ziqiang,HE Xiaoming,DING Guoyu,et al. Effects of outer swirl number on flow characteristics of triple-swirlers[J]. Journal of Aerospace Power,2017,32(2): 306-313. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.02.007
    [19] 常峰,林宏军,程明,等. 低旋流中心分级燃烧室流场特性研究[J]. 推进技术,2020,41(6): 1334-1339. doi: 10.13675/j.cnki.tjjs.190430

    CHANG Feng,LIN Hongjun,CHENG Ming,et al. Study on flow field characteristics of low swirl concentric staged combustor[J]. Journal of Propulsion Technology,2020,41(6): 1334-1339. (in Chinese) doi: 10.13675/j.cnki.tjjs.190430
    [20] VAN MAELE K,MERCI B,DICK E. Comparative study of k-epsilon turbulence models in inert and reacting swirling flows[R]. Orlando,US:33rd AIAA Fluid Dynamics Conference and Exhibit,2003
    [21] LAUNDER B E,SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2): 269-289. doi: 10.1016/0045-7825(74)90029-2
    [22] CAI Jun,JENG S M,TACINA R. The structure of a swirl-stabilized reacting spray issued from an axial swirler[R]. Reno,US:43rd AIAA Aerospace Sciences Meeting and Exhibit,2005.
    [23] PATEL N,MENON S. Simulation of spray-turbulence-flame interactions in a lean direct injection combustor[J]. Combustion and Flame,2008,153(1/2): 228-257. doi: 10.1016/j.combustflame.2007.09.011
    [24] DEWANJI D,RAO A G. Spray combustion modeling in lean direct injection combustors:part I single-element LDI[J]. Combustion Science and Technology,2015,187(4): 537-557. doi: 10.1080/00102202.2014.965810
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  91
  • HTML浏览量:  39
  • PDF量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回