Effects of inlet guide vanes asymmetry layouts on aerodynamic excitation
-
摘要:
导叶非均匀布局是抑制下游转子叶片气动激励的重要方法,对半均分的非均匀布局既能以叶片数为设计参数也能以通道面积为设计参数。推导了对半均分布局下的气动激励理论解,比较了两种设计方案的区别;以某1.5级压气机为例,对比两种非均匀方案下的气动激励特性,分析转子叶片表面非定常气动力的频谱特性,探究激励特性与通道面积的关系,揭示对半均分布局气动激励的分频机理。结果表明:导叶叶排通道面积的变化导致气动激励分频,气动激励具有一定传播规律进而影响转子叶片气动响应幅值分布,两种非均匀方案下气动激励的空间分布和频域特征不同,以通道面积为设计参数时能够获得准确的非均匀激励模式。
Abstract:A key technique for reducing the aerodynamic excitation of downstream rotor blades is the asymmetry layout of inlet guide vanes. The half and half layout divided can be defined in terms of both the number of blades and the vane spacing. This study derives a theoretical solution to aerodynamic excitation with half and half layout and compares the two design schemes’ differences. We compare the aerodynamic excitation properties under two asymmetry schemes using a 1.5-stage compressor as an example, examine the spectral properties of the aerodynamic forces on the rotor blade surface, investigate the relationship between the excitation properties and the vane spacing, and identify the frequency separation mechanism of the aerodynamic excitation for half and half layout. The findings demonstrate that altering the guide vane row’s vane spacing causes the aerodynamic excitation to be frequency divided, the amplitude distribution of the aerodynamic response of rotor blades is affected by the propagation law of aerodynamic excitation, and that the spatial distribution and frequency domain characteristics of the pneumatic excitation differ between the two asymmetry schemes.
-
表 1 压气机几何参数
Table 1. Compressor geometry parameters
参数 数值 导叶叶高/mm 110 转子叶高/mm 90 静子叶高/mm 69 转子设计转速/(r/min) 17000 转子叶尖间隙/mm 0.593 表 2 进口导叶参数
Table 2. Parameters of inlet guide vane
参数 数值 α /(°) 20 β/(°) 18.95 γ/(°) 18 表 3 不同均匀布局导叶出口50%叶高处激励幅值
Table 3. Excitation amplitude at 50% span at outlet guide vane with different symmetric layouts
激励阶次 导叶数为18 导叶数为19 导叶数为20 1阶尾迹 0.28985 0.30775 0.32636 2阶尾迹 0.27982 0.29647 0.31390 1阶势干扰 0.39534 0.42024 0.44415 2阶势干扰 0.35843 0.38073 0.40151 -
[1] SANDERS A J,FLEETER S. Blading response to potential field interactions in axial and radial flow turbomachinery[J]. Journal of Propulsion and Power,1998,14(2): 199-207. doi: 10.2514/2.5268 [2] 宋兆泓. 航空燃气涡轮发动机强度设计[M]. 北京: 北京航空航天大学出版社, 1988. [3] LENG Y. Preliminary design tools in turbomachinery: non-uniformly spaced blade rows, multistage interaction, unsteady radial waves, and propeller horizontal-axis turbine optimization[D]. West Lafayette, US: Purdue University, 2016. [4] RIVAS-GUERRA A J,MIGNOLET M P. Local/global effects of mistuning on the forced response of bladed disks[J]. Journal of Engineering for Gas Turbines and Power,2004,126(1): 131-141. doi: 10.1115/1.1581898 [5] LIM S H,PIERRE C,CASTANIER M P. Predicting blade stress levels directly from reduced-order vibration models of mistuned bladed disks[J]. Journal of Turbomachinery,2006,128(1): 206-210. doi: 10.1115/1.2098754 [6] 辛健强,王建军. 失谐流体激励下叶盘结构响应特性[J]. 航空动力学报,2012,27(4): 801-810.XIN Jianqiang,WANG Jianjun. Forced response characteristic of blade disk with aerodynamic mistuning[J]. Journal of Propulsion Technology,2012,27(4): 801-810. (in Chinese) [7] 王建军. 航空发动机叶盘结构流体激励耦合振动[M]. 北京: 国防工业出版社, 2017. [8] PANNING L, SEXTRO W, POPP K. Optimization of the contact geometry between turbine blades and underplatform dampers with respect to friction damping[R]. Amsterdam, Netherlands: Turbo Expo: Power for Land, Sea, and Air, 2002. [9] GOTTFRIED D, FLEETER S. Passive detuning for HCF reduction[R]. Indianapolis, Indiana: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2002. [10] KEMP R H, HIRSCHBERG M H. Theoretical and experimental analysis of the reduction of rotor blade vibration in turbomachinery through the use of modified stator vane spacing[R]. NACA-TN-4373, 1958. [11] 牛永红,侯安平,张明明,等. 非均匀静子布局对转子叶片振动的影响[J]. 推进技术,2015,36(7): 1078-1084.NIU Yonghong,HOU Anping,ZHANG Mingming,et al. Effects of asymmetric vane spacing on rotor blade vibration[J]. Journal of Propulsion Technology,2015,36(7): 1078-1084. (in Chinese) [12] KANEKO Y, MORI K, OKUI H. Study on the effect of asymmetric vane spacing on vibratory stress of blade[R]. Vienna, Austria: Turbo Expo: Power for Land, Sea, and Air, 2004. [13] 孟越,李琳,李其汉. 气动非谐对叶片表面非定常气动激振力影响研究[J]. 航空动力学报,2007,22(7): 1060-1064. doi: 10.3969/j.issn.1000-8055.2007.07.007MENG Yue,LI Lin,LI Qihan. Study on the influence of aerodynamic mistuned on unsteady aerodynamic force of blade[J]. Journal of Aerospace Power,2007,22(7): 1060-1064. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.07.007 [14] 孟越,李琳,李其汉. 不对称静子尾迹流场激振力分析及计算方法研究[J]. 北京航空航天大学学报,2007,33(9): 1005-1008. doi: 10.3969/j.issn.1001-5965.2007.09.001MENG Yue,LI Lin,LI Qihan. Investigation of force under asymmetry stator wake[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(9): 1005-1008. (in Chinese) doi: 10.3969/j.issn.1001-5965.2007.09.001 [15] 孟越,李琳,李其汉. 不对称静子叶片非谐方案研究[J]. 航空动力学报,2007,22(12): 2083-2088. doi: 10.3969/j.issn.1000-8055.2007.12.019MENG Yue,LI Lin,LI Qihan. Asymmetry stator mistuned blade design and research[J]. Journal of Aerospace Power,2007,22(12): 2083-2088. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.12.019 [16] CLARK J P, AGGARWALA A S, VELONIS M A, et al. Using CFD to reduce resonant stresses on a single-stage, high-pressure turbine blade[R]. Amsterdam, Netherlands: Turbo Expo: Power for Land, Sea, and Air, 2002. [17] MONK D J,KEY N L,FULAYTER R D. Reduction of aerodynamic forcing through introduction of stator asymmetry in axial compressors[J]. Journal of Propulsion and Power,2016,32(1): 134-141. doi: 10.2514/1.B35704 [18] ZHENG Y,HUI Y. Coupled fluid-structure flutter analysis of a transonic fan[J]. Chinese Journal of Aeronautics,2011,24(3): 258-264. doi: 10.1016/S1000-9361(11)60031-9 [19] 肖大启,郑赟,杨慧. 轴向间距对转子叶片气动激励的影响[J]. 航空动力学报,2012,27(10): 2307-2313.XIAO Daqi,ZHENG Yun,YANG Hui. Effect of axial spacing on aerodynamic excitation of rotor blade[J]. Journal of Aerospace Power,2012,27(10): 2307-2313. (in Chinese) [20] 郑赟,王静. 错频对叶片的气动弹性稳定性影响[J]. 航空动力学报,2013,28(5): 1029-1036.ZHENG Yun,WANG Jing. Influence of frequency mistuning on aeroelastic stability of blade[J]. Journal of Aerospace Power,2013,28(5): 1029-1036. (in Chinese) [21] 郑赟,田晓,杨慧. 跨声速风扇叶片变形对气动性能的影响[J]. 航空动力学报,2011,26(7): 1621-1627. doi: 10.13224/j.cnki.jasp.2011.07.028ZHENG Yun,TIAN Xiao,YANG Hui. Impact of blade deflection on aerodynamic performance[J]. Journal of Aerospace Power,2011,26(7): 1621-1627. (in Chinese) doi: 10.13224/j.cnki.jasp.2011.07.028 [22] CHIMA R. Calculation of multistage turbomachinery using steady characteristic boundary conditions[R]. Reston, US: 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998. [23] MATHUR S. Unsteady flow simulations using unstructured sliding meshes[R]. Reston, US: 25th AlAA Fluid Dynamics Conference, 1994. [24] SUN T, HOU A, ZHANG M, et al. Analysis on the reduction of rotor blade vibration using asymmetric vane spacing[R]. Montreal, Canada: Turbo Expo: Power for Land, Sea, and Air, 2015. -