留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

支板尾流引起轴流压气机叶片失效的数值分析

罗楚威 陈江 徐宁 王琦

罗楚威, 陈江, 徐宁, 等. 支板尾流引起轴流压气机叶片失效的数值分析[J]. 航空动力学报, 2022, 37(11):2617-2626 doi: 10.13224/j.cnki.jasp.20220293
引用本文: 罗楚威, 陈江, 徐宁, 等. 支板尾流引起轴流压气机叶片失效的数值分析[J]. 航空动力学报, 2022, 37(11):2617-2626 doi: 10.13224/j.cnki.jasp.20220293
LUO Chuwei, CHEN Jiang, XU Ning, et al. Numerical analysis on blade failure induced by strut wake in axial compressor[J]. Journal of Aerospace Power, 2022, 37(11):2617-2626 doi: 10.13224/j.cnki.jasp.20220293
Citation: LUO Chuwei, CHEN Jiang, XU Ning, et al. Numerical analysis on blade failure induced by strut wake in axial compressor[J]. Journal of Aerospace Power, 2022, 37(11):2617-2626 doi: 10.13224/j.cnki.jasp.20220293

支板尾流引起轴流压气机叶片失效的数值分析

doi: 10.13224/j.cnki.jasp.20220293
基金项目: 国家科技重大专项(J2019-Ⅱ-0005-0025)
详细信息
    作者简介:

    罗楚威(1989-),男,工程师,博士生,主要从事叶轮机械非定常气动力学及气动弹性问题研究

  • 中图分类号: V231.3

Numerical analysis on blade failure induced by strut wake in axial compressor

  • 摘要:

    为探究某燃气轮机压气机过渡段支板后方导叶发生疲劳失效的原因,以带支板过渡段及高压压气机前1.5级为研究对象,利用非定常数值模拟及单向流固耦合方法,分析支板对压气机非定常流场的影响及导叶的强迫响应特征,并通过疲劳强度实验对分析结果进行了校核。结果表明:支板的存在使压气机设计点等熵效率下降3.6个百分点;支板尾缘交替脱落的涡使导叶进口攻角偏离设计值,造成气动性能下降,叶表压力脉动大幅增加;随着导叶与支板周向距离增大,支板对导叶的影响先增大后迅速减小;支板脱落涡引起的扰动频率比较分散,其低频分量引起的低阶共振是造成导叶疲劳失效的根本原因,其振动应力可达400 MPa;数值计算与实验结果吻合,证明了计算的可靠性。

     

  • 图 1  计算模型示意图

    Figure 1.  Diagram of computational model

    图 2  流固耦合模拟方法分类[20]

    Figure 2.  Classification of fluid-structure coupling simulation methods[20]

    图 3  S0叶片有限元模型

    Figure 3.  Finite element model of S0

    图 4  S0叶片坎贝尔图

    Figure 4.  Campbell diagram for S0

    图 5  压气机特性线

    Figure 5.  Performance map of the compressor

    图 6  5%叶高截面瞬时涡量云图

    Figure 6.  Instantaneous vorticity distribution at 5% span

    图 7  不同叶高截面瞬时熵云图

    Figure 7.  Instantaneous entropy distribution at different spans

    图 8  不同时刻S0进口气流攻角展向分布

    Figure 8.  Distribution of attack angle along vane height in the S0 inlet at different moments

    图 9  5%叶高S0进口气流攻角随时间变化

    Figure 9.  Time-varying curve of attack angle in the S0 inlet at 5% span

    图 10  5%叶高S0表面静压脉动方均根轴向分布

    Figure 10.  Axial distribution of RMS of static pressure pulsation in S0 surface at 5% span

    图 11  频谱分析考察点位置示意图

    Figure 11.  Position of points for spectrum analysis

    图 12  静压脉动频谱分析结果

    Figure 12.  Spectrum of static pressure perturbation

    图 13  瞬态响应监测点应力收敛曲线

    Figure 13.  Stress convergence curve of transient response monitoring points

    图 14  监测点应力频谱分析

    Figure 14.  Spectrum of stress in monitoring points

    表  1  模态分析结果

    Table  1.   Results of mode analysis

    阶次固有频率/Hz振型
    1554.0一弯
    21622.0一扭
    32581.7二弯
    43608.2
    55920.0
    66237.9
    77571.5
    88281.4
    910684.0
    1011548.0
    下载: 导出CSV

    表  2  压气机进口参数

    Table  2.   Compressor inlet parameters

    归一化叶高/%总压/kPa总温/K
    10531.65454.575
    30551.65446.150
    50556.75446.775
    70560.00451.675
    90559.05458.500
    下载: 导出CSV

    表  3  疲劳强度实验结果

    Table  3.   Results of fatigue strength test

    叶片序号频率/Hz应力/MPa寿命/106实验时间/h
    1511.33504.692.5
    2494.33009.575.4
    3512.425014.007.6
    下载: 导出CSV
  • [1] NORRIS G,DOMINY R G,SMITH A D. Strut influences within a diffusing annular S-shaped duct[R]. ASME 98-GT-425,1998.
    [2] BAILEY D W,BRITCHFORD K M,CARROTTE J F,et al. Performance assessment of an annular S-shaped duct[J]. Journal of Turbomachinery,1997,119(1): 149-156. doi: 10.1115/1.2841003
    [3] FELDCAMP G K,BIRK A M. Strut losses in a diverging annular diffuser with swirling flow[R]. ASME GT2006-90566,2006.
    [4] SENOO Y,KAWAGUCHI N,KOJIMA T,et al. Optimum strut-configuration for downstream annular diffusers with variable swirling inlet flow[J]. Journal of Fluids Engineering,1981,103(2): 294-298. doi: 10.1115/1.3241736
    [5] 卜焕先,谭慧俊,何小明,等. 带支板轴对称弯曲管道的流动特性[J]. 航空动力学报,2016,31(5): 1252-1259.

    BU Huanxian,TAN Huijun,HE Xiaoming,et al. Flow field characteristics in an axisymmetric bend duct with struts[J]. Journal of Aerospace Power,2016,31(5): 1252-1259. (in Chinese)
    [6] NAYLOR E M J,DUEÑAS C O,MILLER R J,et al. Optimization of nonaxisymmetric endwalls in compressor S-shaped ducts[J]. Journal of Turbomachinery,2010,132(1): 011011.1-011011.10.
    [7] GRÄSEL J,PIERRÉ M,DEMOLIS J. Parametric inter-turbine duct design and optimisation[R]. Hamburg,Germany:25th International Congress of the Aeronautical Sciences,2006.
    [8] CHEN Y,HU W. Optimized aerodynamic design of aggressive intermediate turbine duct with strut fairings using genetic algorithms[R]. ASME GT2016-56639,2016.
    [9] 吴思宇,朱品武,汪作心,等. 过渡段部分对某高压压气机性能影响研究[J]. 热能动力工程,2021,36(9): 42-50.

    WU Siyu,ZHU Pinwu,WANG Zuoxin,et al. Research on the effect of transition section on performance of high pressure compressor[J]. Journal of Engineering for Thermal Energy and Power,2021,36(9): 42-50. (in Chinese)
    [10] HUBINKA J,SANTNER C,PARADISO B,et al. Design and construction of a two shaft test turbine for investigation of mid turbine frame flows[R]. ISABE-2009-1293,2009.
    [11] WALKER A D,BARKER A G,CARROTTE J F,et al. Integrated outlet guide vane design for an aggressive S-shaped compressor transition duct[J]. Journal of Turbomachinery,2013,135(1): 011035.1-011035.11.
    [12] WALKER A D,MARIAH I,HALL C. An experimental aerodynamic evaluation of design choices for a low-pressure compressor transition duct[J]. Journal of Turbomachinery,2021,143(9): 091004.1-091004.12.
    [13] ZHOU X D,WOLFF J M. Transonic compressor IGV/rotor interaction analysis including fluid structure interaction[R]. AIAA-2004-5292,2004.
    [14] MONK D,MURRAY W,KEY N L,et al. Experimental and computational study of forced response in a multistage axial compressor[R]. AIAA-2015-1342,2015.
    [15] MIURA T,SAKAI N,KANAZAWA N,et al. Forced response excitation due to the stator vanes of two and three compressor stages away[J]. Journal of Engineering for Gas Turbines and Power,2021,143(11): 111018.1-111018.9.
    [16] 田少杰,漆文凯,许正华. 气流激励下叶片振动响应分析方法[J]. 航空动力学报,2021,36(4): 826-838.

    TIAN Shaojie,QI Wenkai,XU Zhenghua. Method of blade vibration response analysis under airflow excitation[J]. Journal of Aerospace Power,2021,36(4): 826-838. (in Chinese)
    [17] 杨荣菲,刘氦旭,向宏辉,等. 进口探针支杆尾迹诱发压气机转子叶片共振的数值研究[J]. 推进技术,2021,42(5): 1002-1012.

    YANG Rongfei,LIU Haixu,XIANG Honghui,et al. Numerical study of compressor rotor blade resonance induced by wake of inlet probe support[J]. Journal of Propulsion Technology,2021,42(5): 1002-1012. (in Chinese)
    [18] NG W F,O’BRIEN W F,OLSEN T L. Experimental investigation of unsteady fan flow interaction with downstream struts[J]. Journal of Propulsion and Power,1987,3(2): 157-163. doi: 10.2514/3.22968
    [19] CHIANG H-W D,TURNER M G. Compressor blade forced response due to downstream vane-strut potential interaction[J]. Journal of Turbomachinery,1996,118(1): 134-142. doi: 10.1115/1.2836594
    [20] 王豪. 叶片流固耦合模拟方法研究[D]. 北京:北京航空航天大学,2020.

    WANG Hao. Investigation on fluid-structure interaction simulation of blades[D]. Beijing:Beihang University,2020.(in Chinese)
    [21] BENRA F K,DOHMEN H J,PEI J,et al. A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions[J]. Journal of Applied Mathematics,2011,2011: 1-16.
    [22] KIELB R,CHIANG H W. Recent advancements in turbo-machinery forced response analyses[R]. Reno,US:30th Aerospace Sciences Meeting and Exhibit,1992.
    [23] MOFFATT S,HE L. Blade forced response prediction for industrial gas turbines: Part Ⅰ methodologies[R]. ASME GT2003-38640,2003.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  117
  • HTML浏览量:  43
  • PDF量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 网络出版日期:  2022-09-14

目录

    /

    返回文章
    返回