留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应循环发动机总体设计技术探讨

陈敏 张纪元 唐海龙 朱之丽

陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报, 2022, 37(10):2046-2058 doi: 10.13224/j.cnki.jasp.20220294
引用本文: 陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报, 2022, 37(10):2046-2058 doi: 10.13224/j.cnki.jasp.20220294
CHEN Min, ZHANG Jiyuan, TANG Hailong, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power, 2022, 37(10):2046-2058 doi: 10.13224/j.cnki.jasp.20220294
Citation: CHEN Min, ZHANG Jiyuan, TANG Hailong, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power, 2022, 37(10):2046-2058 doi: 10.13224/j.cnki.jasp.20220294

自适应循环发动机总体设计技术探讨

doi: 10.13224/j.cnki.jasp.20220294
基金项目: 国家自然科学基金(51776010);国家科技重大专项(2017-Ⅰ-0005-0006)
详细信息
    作者简介:

    陈敏(1979-),男,教授、博士生导师,博士,主要从事航空发动机总体性能研究

    通讯作者:

    张纪元(1994-),男,助理研究员,博士,主要从事航空发动机总体性能研究。E-mail: zhangjiyuan94@buaa.edu.cn

  • 中图分类号: V233

Discussion on overall performance design technology of adaptive cycle engine

  • 摘要:

    自适应循环发动机是下一代飞行器的重要候选动力装置。在简要介绍国内外研究进展之后,重点对目前开展的自适应循环发动机总体设计研究进行综述:首先介绍典型的自适应循环发动机总体性能方案及结构形式,然后讨论自适应循环发动机的性能收益和代价,并对未来的总体设计发展趋势进行展望。认为未来自适应循环发动机总体设计应在并行多/变维度、多学科优化体系下开展,考虑多源不确定性因素的影响,可引入混合维度仿真方法评估新颖部件技术特征,并结合飞行任务需求开展飞机/发动机的综合性能优化。

     

  • 图 1  美国ACE的主要研究计划

    Figure 1.  Major research programs for ACE in the United States

    图 2  带叶尖风扇的ACE示意图

    Figure 2.  Schematic of ACE with flade

    图 3  带后可变风扇的ACE示意图

    Figure 3.  Schematic of ACE with rear variable fan

    图 4  三股流ACE示意图

    Figure 4.  Schematic of three-stream ACE

    图 5  带可变风扇系统的ACE示意图

    Figure 5.  Schematic of ACE with variable fan system

    图 6  带后可变风扇的ACE两种工作模式流路示意图

    Figure 6.  Schematic of two operating modes of ACE flow path with rear fan

    图 7  带后可变风扇的ACE可调部件示意图

    Figure 7.  Schematic of adjustable components of an ACE with rear variable fan

    图 8  带后可变风扇的ACE速度特性(中间状态)

    Figure 8.  ACE speed characteristics with rear variable fan (intermediate state)

    图 9  带后可变风扇的ACE速度特性(最大状态)

    Figure 9.  ACE speed characteristics with rear variable fan (maximum state)

    图 10  高压涡轮进口总温随速度的变化(最大状态)

    Figure 10.  Total temperature of high-pressure turbine inlet with velocity (maximum state)

    图 11  巡航过程发动机不同工作模式的性能对比

    Figure 11.  Performance comparison of different operating modes of engine during cruising

    图 12  节流过程发动机空气流量对比

    Figure 12.  Comparison of air flow of engine during throttling

    图 13  节流过程发动机耗油率对比

    Figure 13.  Comparison of specific fuel consumption during throttling

    图 14  轮盘型设计体系架构

    Figure 14.  Roulette design architecture

    表  1  ACE主要部件缩写含义

    Table  1.   Main components’ abbreviation of an ACE

    缩写全称含义
    FladeFan on blade叶尖风扇
    CDFSCore driven fan stage核心机驱动风扇级
    HPCHigh pressure compressor高压压气机
    HPTHigh pressure turbine高压涡轮
    LPTLow pressure turbine低压涡轮
    MSVMode selection valve模式选择阀门
    VABIVariable area bypass injector可变面积涵道引射器
    FVABIFront variable area bypass injector前可变面积涵道引射器
    RVABIRear variable area bypass injector后可变面积涵道引射器
    FFANFront fan前风扇
    VFANVariable fan可变风扇
    下载: 导出CSV

    表  2  带后可变风扇ACE主要可调部件缩写含义

    Table  2.   Main variable components’ abbreviation of an ACE with rear variable fan

    缩写全称含义
    VSV-VFANVariable stator vane of VFAN可变风扇的可调进口导叶
    VSV-CDFSVariable stator vane of CDFS核心机驱动风扇级的可调进口导叶
    VSV-HPCVariable stator vane of HPC高压压气机的可调进口导叶
    VSV-HPTVariable stator vane of HPT高压涡轮的可调进口导叶
    VSV-LPTVariable stator vane of LPT低压涡轮的可调进口导叶
    A8Main nozzle throat area主喷管喉道面积
    下载: 导出CSV
  • [1] 李斌,陈敏,朱之丽,等. 自适应循环发动机不同工作模式稳态特性研究[J]. 推进技术,2013,34(8): 1009-1015. doi: 10.13675/j.cnki.tjjs.2013.08.002

    LI Bin,CHEN Min,ZHU Zhili,et al. Steady performance investigation on various modes of an adaptive cycle aero-engine[J]. Journal of Propulsion Technology,2013,34(8): 1009-1015. (in Chinese) doi: 10.13675/j.cnki.tjjs.2013.08.002
    [2] PATEL H R. Parametric cycle analysis of adaptive cycle engine[D]. Arlington,US: The University of Texas at Arlington, 2016.
    [3] GE Aviation. GE’s adaptive cycle engine[EB/OL]. [2022-03-01].https://www.geaviation.com/military/engines/ge-adaptive-cycle-engine.
    [4] 唐海龙. 面向对象的航空发动机性能仿真系统及其应用[D]. 北京: 北京航空航天大学, 2000.

    TANG Hailong. Object-oriented aeroengine performance simulation system and its application[D]. Beijing: Beihang University, 2000. (in Chinese)
    [5] JOHNSON J E. Variable cycle engine developments at general electric: 1955—1995[C]//Developments in High-speed Vehicle Propulsion Systems. New York, US: AIAA, 1996: 105-158.
    [6] 孙明霞,梁春华. 美国自适应发动机研究的进展与启示[J]. 航空发动机,2017,43(1): 99-106. doi: 10.13477/j.cnki.aeroengine.2017.01.017

    SUN Mingxia,LIANG Chunhua. Progress and revelation of us adaptive cycle engine development[J]. Aeroengine,2017,43(1): 99-106. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2017.01.017
    [7] 黄红超,王占学,刘增文,等. 基于iSIGHT的变循环发动机性能优化[J]. 机械设计与制造,2012(2): 217-219. doi: 10.3969/j.issn.1001-3997.2012.02.085

    HUANG Hongchao,WANG Zhanxue,LIU Zengwen,et al. A Numerical simulation system of the variable cycle engines[J]. Machinery Design and Manufacture,2012(2): 217-219. (in Chinese) doi: 10.3969/j.issn.1001-3997.2012.02.085
    [8] 骆广琦,李游,刘琨,等. 变循环发动机组合变几何调节方案[J]. 航空动力学报,2014,29(10): 2273-2278. doi: 10.13224/j.cnki.jasp.2014.10.001

    LUO Guangqi,LI You,LIU Kun,et al. Combined variable geometry regulation schemes for variable cycle engine[J]. Journal of Aerospace Power,2014,29(10): 2273-2278. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.10.001
    [9] 骆广琦,李游,吴涛,等. 基于蜂群算法的变循环发动机最小耗油率优化[J]. 航空发动机,2016,42(1): 1-5. doi: 10.13477/j.cnki.aeroengine.2016.01.001

    LUO Guangqi,LI You,WU Tao,et al. The minimum fuel consumption optimization of variable cycle engine based on artificial bee colony algorithm[J]. Aeroengine,2016,42(1): 1-5. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2016.01.001
    [10] 孙丰勇,张海波,叶志锋,等. 航空发动机超声速巡航性能寻优控制研究[J]. 推进技术,2015,36(8): 1248-1256. doi: 10.13675/j.cnki.tjjs.2015.08.019

    SUN Fengyong,ZHANG Haibo,YE Zhifeng,et al. A study of aero-engine supersonic cruise performance seeking control[J]. Journal of Propulsion Technology,2015,36(8): 1248-1256. (in Chinese) doi: 10.13675/j.cnki.tjjs.2015.08.019
    [11] 孙丰勇,张海波,叶志锋. 超声速进气道/发动机一体化控制[J]. 航空动力学报,2014,29(10): 2279-2287. doi: 10.13224/j.cnki.jasp.2014.10.002

    SUN Fengyong,ZHANG Haibo,YE Zhifeng. Integrated control for supersonic inlet/engine[J]. Journal of Aerospace Power,2014,29(10): 2279-2287. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.10.002
    [12] 苟学中. 变循环发动机建模及控制规律研究[D]. 南京: 南京航空航天大学, 2011.

    GOU Xuezhong. Research on modeling and control laws for variable cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
    [13] 王元. 变循环发动机建模及性能寻优控制技术研究[D]. 南京: 南京航空航天大学, 2015.

    WANG Yuan. Research on modeling techniques and performance seeking control of variable cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [14] 王元,张平平,李秋红,等. 变循环发动机建模方法研究及验证[J]. 航空动力学报,2014,29(11): 2643-2651. doi: 10.13224/j.cnki.jasp.2014.11.014

    WANG Yuan,ZHANG Pingping,LI Qiuhong,et al. Research and validation of variable cycle engine modeling method[J]. Journal of Aerospace Power,2014,29(11): 2643-2651. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.11.014
    [15] 孟鑫. 一种自适应循环发动机性能匹配机理与优化研究[D]. 北京: 北京航空航天大学, 2021.

    MENG Xin. Study on matching mechanism and optimization of adaptive cycle engine[D]. Beijing: Beihang University, 2021. (in Chinese)
    [16] ZHENG Junchao,CHEN Min,TANG Hailong. Matching mechanism analysis on an adaptive cycle engine[J]. Chinese Journal of Aeronautics,2017,30(2): 706-718. doi: 10.1016/j.cja.2017.02.006
    [17] MENG Xin,ZHU Zhili,CHEN Min,et al. A matching problem between the front fan and aft fan stages in adaptive cycle engines with convertible fan systems[J]. Energies,2021,14(4): 1-31.
    [18] XU Yihao,TANG Hailong,CHEN Min. Design method of optimal control schedule for the adaptive cycle engine steady-state performance[J]. Chinese Journal of Aeronautics,2022,35(4): 148-164. doi: 10.1016/j.cja.2021.08.025
    [19] MENG Xin,ZHU Zhili,CHEN Min. Performance optimization of adaptive cycle engine during subsonic climb[J]. Energy Procedia,2019,158: 1613-1619. doi: 10.1016/j.egypro.2019.01.377
    [20] ZHANG Jiyuan,DONG Pengcheng,TANG Hailong,et al. General design method of control law for adaptive cycle engine mode transition[J]. AIAA Journal,2022,60(1): 330-344.
    [21] LÜ Ya,TANG Hailong,CHEN Min. A study on combined variable geometries regulation of adaptive cycle engine during throttling[J]. Applied Sciences,2016,6: 1-19.
    [22] 孟鑫,朱之丽,陈敏. 1种自适应循环发动机亚声速巡航节流性能研究[J]. 航空发动机,2018,44(6): 1-5. doi: 10.13477/j.cnki.aeroengine.2018.06.001

    MENG Xin,ZHU Zhili,CHEN Min. Study on subsonic cruise throttling performance of an adaptive cycle engine[J]. Aeroengine,2018,44(6): 1-5. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2018.06.001
    [23] 郑俊超. 自适应循环发动机过渡态性能模型研究[D]. 北京: 北京航空航天大学, 2015.

    ZHENG Junchao. Transient performance simulation of an adaptive cycle aero-engine[D]. Beijing: Beihang University, 2015. (in Chinese)
    [24] ZHANG Jiyuan,TANG Hailong,CHEN Min. Robust design of an adaptive cycle engine performance under component performance uncertainty[J]. Aerospace Science and Technology,2021,113: 1-21.
    [25] ZHANG Jiyuan,TANG Hailong,CHEN Min. Linear substitute model-based uncertainty analysis of complicated nonlinear energy system performance (case study of an adaptive cycle engine)[J]. Applied Energy,2019,249: 87-108. doi: 10.1016/j.apenergy.2019.04.138
    [26] CHEN Min,ZHANG Jiyuan,TANG Hailong. Interval analysis of the standard of adaptive cycle engine component performance deviation[J]. Aerospace Science and Technology,2018,81: 179-191. doi: 10.1016/j.ast.2018.07.004
    [27] XU Zhewen,LI Ming,TANG Hailong,et al. A multi-fidelity simulation method research on front variable area bypass injector of an adaptive cycle engine[J]. Chinese Journal of Aeronautics,2022,35(4): 202-219. doi: 10.1016/j.cja.2021.08.034
    [28] 周红. 变循环发动机特性分析及其与飞机一体化设计研究[D]. 西安: 西北工业大学, 2016.

    ZHOU Hong. Investigation on the variable cycle engine characteristics and integration design with aircraft[D]. Xi’an: Northwestern Polytechnical Universtiy, 2016. (in Chinese)
    [29] 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安: 西北工业大学, 2017.

    JIA Linyuan. Research on variable cycle engine control schedule design[D]. Xi’an: Northwestern Polytechnical Universtiy, 2017. (in Chinese)
    [30] 杨宇飞. 自适应循环发动机建模及控制规律研究[D]. 南京: 南京航空航天大学, 2017.

    YANG Yufei. Research on modeling and control law of adaptive cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
    [31] 李瑞军,王靖凯,吴濛. 自适应变循环发动机性能优势评价方法[J]. 推进技术,2021,47(2): 17-21.

    LI Ruijun,WANG Jingkai,WU Meng. Performance advantage evaluation method of adaptive variable cycle engine[J]. Journal of Propulsion Technology,2021,47(2): 17-21. (in Chinese)
    [32] 刘勤,周人治,王占学,等. 三外涵变循环发动机性能数值模拟[J]. 燃气涡轮试验与研究,2014,27(5): 1-4. doi: 10.3969/j.issn.1672-2620.2014.05.001

    LIU Qin,ZHOU Renzhi,WANG Zhanxue,et al. Numerical simulation on performance of triple bypass variable cycle engine[J]. Gas Turbine Experiment and Research,2014,27(5): 1-4. (in Chinese) doi: 10.3969/j.issn.1672-2620.2014.05.001
    [33] 刘勤,李刚团,黄红超. 3外涵变循环发动机循环参数匹配模拟[J]. 航空发动机,2015,42(6): 51-54.

    LIU Qin,LI Gangtuan,HUANG Hongchao. Matching simulation on cycle parameter of triple bypass variable cycle engine[J]. Aeroengine,2015,42(6): 51-54. (in Chinese)
    [34] 刘勤, 李刚团, 王为丽, 等. 三外涵变循环发动机变几何部件与整机匹配技术研究[C]// 探索创新交流——第六届中国航空学会青年科技论坛文集(下册). 沈阳: 航空工业出版社, 2014: 1075-1080.

    LIU Qin, LI Gangtuan, WANG Weili, et al. Matching technology research on variable geometrical framework of triple bypass variable cycle engine[C]//Exploring Innovation and Exchange: Proceedings of the 6th Chinese Society of Aeronautics and Astronautics Youth Science and Technology Forum (Part 2). Shenyang: Aviation Industry Press, 2014: 1075-1080. (in Chinese)
    [35] 祁宏斌,黄顺洲,王为丽,等. 基于进发匹配的自适应循环发动机总体性能设计初步研究[J]. 燃气涡轮试验与研究,2016,29(5): 5-10. doi: 10.3969/j.issn.1672-2620.2016.05.002

    QI Hongbin,HUANG Shunzhou,WANG Weili,et al. Adaptive cycle engine performance design based on inlet/engine matching concept[J]. Gas Turbine Experiment and Research,2016,29(5): 5-10. (in Chinese) doi: 10.3969/j.issn.1672-2620.2016.05.002
    [36] 郑俊超. 自适应循环发动机过渡过程控制规律优化方法研究[D]. 北京: 北京航空航天大学, 2019.

    ZHENG Junchao. Transient control schedule optimization method research on an adaptive cycle engine[D]. Beijing: Beihang University, 2019. (in Chinese)
    [37] ZHENG Junchao,TANG Hailong,CHEN Min. Equilibrium running principle analysis on an adaptive cycle engine[J]. Applied Thermal Engineering,2018,132: 393-409. doi: 10.1016/j.applthermaleng.2017.12.102
    [38] ZHENG Junchao,TANG Hailong,CHEN Min. Optimal matching control schedule research on an energy system[J]. Energy Procedia,2019,158: 1685-1693. doi: 10.1016/j.egypro.2019.01.393
    [39] 徐义皓. 自适应循环发动机的飞/发综合性能优化设计方法研究[D]. 北京: 北京航空航天大学, 2022.

    XU Yihao. Research on aircraft/engine integration optimization and design method of an adaptive cycle aero-engine[D]. Beijing: Beihang University, 2022. (in Chinese)
    [40] 吕雅. 一种自适应循环发动机总体性能分析[D]. 北京: 北京航空航天大学, 2016.

    LÜ Ya. Study on performance of adaptive cycle engine[D]. Beijing: Beihang University, 2016. (in Chinese)
    [41] CHEN Min,ZHANG Jiyuan,TANG Hailong. Performance analysis of a three-stream adaptive cycle engine during throttling[J]. International Journal of Aerospace Engineering,2018,2018: 9237907.1-9237907.16.
    [42] MENG Xin, ZHU Zhili, CHEN Min. Steady-state performance vomparison of two different adaptive cycle engine configurations[R]. New York, US: 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017.
    [43] MENG Xin, YANG Xinyu, CHEN Min, et al. High-level power extraction from adaptive cycle engine for directed energy weapon[R]. New York, US: AIAA Propulsion and Energy Forum 2018 Joint Propulsion Conference, 2018.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  314
  • HTML浏览量:  183
  • PDF量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 网络出版日期:  2022-09-08

目录

    /

    返回文章
    返回