留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多层感知机的航空发动机压气机盘应力和温度预测

王学民 徐敬沛 何云

王学民, 徐敬沛, 何云. 基于多层感知机的航空发动机压气机盘应力和温度预测[J]. 航空动力学报, 2024, 39(4):20220297 doi: 10.13224/j.cnki.jasp.20220297
引用本文: 王学民, 徐敬沛, 何云. 基于多层感知机的航空发动机压气机盘应力和温度预测[J]. 航空动力学报, 2024, 39(4):20220297 doi: 10.13224/j.cnki.jasp.20220297
WANG Xuemin, XU Jingpei, HE Yun. Stress and temperature prediction of aero-engine compressor disk based on multilayer perceptron[J]. Journal of Aerospace Power, 2024, 39(4):20220297 doi: 10.13224/j.cnki.jasp.20220297
Citation: WANG Xuemin, XU Jingpei, HE Yun. Stress and temperature prediction of aero-engine compressor disk based on multilayer perceptron[J]. Journal of Aerospace Power, 2024, 39(4):20220297 doi: 10.13224/j.cnki.jasp.20220297

基于多层感知机的航空发动机压气机盘应力和温度预测

doi: 10.13224/j.cnki.jasp.20220297
基金项目: 航空动力基础研究项目
详细信息
    作者简介:

    王学民(1992-),男,工程师,主要从事航空发动机结构强度和寿命管理研究

  • 中图分类号: V232.3

Stress and temperature prediction of aero-engine compressor disk based on multilayer perceptron

  • 摘要:

    将发动机可测参数作为初始特征,利用人工神经网络技术建立航空发动机压气机盘应力和温度预测的MLP (multilayer perceptron)模型,采用BP(back propagation)神经网络算法进行训练。结果表明:该方法预测结果与传统有限元计算结果吻合较好,相对偏差均在1%以内,判定系数达到0.95以上,方均根误差均在5以内,且计算速度由小时级提升为分秒级,可为后续工程应用提供依据。

     

  • 图 1  多层感知机示意

    Figure 1.  Schematic representation of multilayer perceptron

    图 2  3种常用的激活函数

    Figure 2.  Three commonly used activation functions

    图 3  BP算法思想

    Figure 3.  Idea of BP algorithm

    图 4  BP算法概述

    Figure 4.  Overview of BP algorithm

    图 5  模型构建流程

    Figure 5.  Model building process

    图 6  各输入参数的分布(无量纲)

    Figure 6.  Distribution of input parameters (non-dimensional)

    图 7  数据归一化效果(以P25为例)

    Figure 7.  Effect of data normalization (taking P25 as an example)

    图 8  模型预测值与盘心真实应力拟合图

    Figure 8.  Fitting diagram of model predicted value and real stress of dick center

    图 9  应力预测误差分布直方图

    Figure 9.  Histogram of stress prediction error distribution

    图 10  模型预测值与盘心真实温度拟合图

    Figure 10.  Fitting diagram of model predicted value and real temperature of dick center

    图 11  温度预测误差分布直方图

    Figure 11.  Histogram of temperature prediction error distribution

    表  1  模型输入层参数及含义

    Table  1.   Model input layer parameters and meanings

    输入层参数 含义
    H/km 高度
    Ma 马赫数
    N2/(r/min) 压气机转速
    W25/(kg/s) 压气机进口空气流量
    P25/kPa 压气机进口总压
    P3/kPa 压气机出口总压
    T25/℃ 压气机进口总温
    T3/℃ 压气机出口总温
    下载: 导出CSV

    表  2  应力预测模型评价指标

    Table  2.   Evaluation index of stress prediction model

    最优化
    策略
    sigmoid函数 tanh函数 ReLU函数
    R2 JRMSE R2 JRMSE R2 JRMSE
    LBFGS 0.95 15.3 −0.02 145 1.00 2.81
    SGD −0.06 139 −0.07 149 −55.8 807
    Adam −19.4 707 −13.7 676 −1.08 235
    下载: 导出CSV

    表  3  模型应力预测结果对比

    Table  3.   Comparison of model stress prediction results

    真实值/
    MPa
    预测值/
    MPa
    偏差/
    %
    真实值/
    MPa
    预测值/
    MPa
    偏差/
    %
    808.0 807.8 0.02 844.0 843.6 0.05
    789.0 790.0 0.14 641.0 643.8 0.44
    759.0 759.5 0.07 397.0 395.0 0.50
    844.0 846.9 0.35 422.0 424.1 0.51
    858.0 857.5 0.05 860.0 858.6 0.15
    807.0 807.5 0.07 843.0 844.9 0.23
    806.0 803.5 0.31 782.0 782.2 0.03
    791.0 788.0 0.38 796.0 794.8 0.15
    下载: 导出CSV

    表  4  应力预测模型评价指标分析结果

    Table  4.   Evaluation index analysis results of stress prediction model

    评价指标抽样次数
    123456
    R21.001.001.000.991.001.00
    ${J_{{\text{RMSE}}}}$2.412.321.672.682.371.76
    下载: 导出CSV

    表  5  模型温度预测结果对比

    Table  5.   Comparison of model temperature prediction results

    真实值/
    预测值/
    偏差/
    %
    真实值/
    预测值/
    偏差/
    %
    554.0 552.7 0.23 600.0 600.6 0.11
    531.0 530.8 0.02 501.0 498.4 0.51
    643.0 641.8 0.18 397.0 395.1 0.46
    505.0 503.5 0.30 694.0 695.9 0.28
    543.0 543.2 0.04 603.0 604.3 0.23
    579.0 580.2 0.21 630.0 631.0 0.16
    564.0 565.1 0.21 607.0 607.6 0.11
    570.0 569.0 0.16 452.0 450.1 0.41
    下载: 导出CSV

    表  6  温度预测模型评价指标分析结果

    Table  6.   Evaluation index analysis results of temperature prediction model

    次数抽样次数
    123456
    R21.001.001.001.001.001.00
    ${J_{{\text{RMSE}}}}$1.241.311.341.101.461.36
    下载: 导出CSV
  • [1] 钱文学. 某型航空发动机低压压气机轮盘疲劳可靠性分析[D]. 沈阳: 东北大学,2006. QIAN Wenxue. Fatigue reliability analysis of aeroengine low pressure compressor disk[D]. Shenyang: Northeastern University,2006. (in Chinese

    QIAN Wenxue. Fatigue reliability analysis of aeroengine low pressure compressor disk[D]. Shenyang: Northeastern University, 2006. (in Chinese)
    [2] 张成龙. 某型航空发动机低压压气机轮盘疲劳寿命评估与损伤分析[D]. 沈阳: 东北大学,2017. ZHANG Chenglong. Fatigue life evaluation and damage analysis of aeroengine low pressure compressor disk[D]. Shenyang: Northeastern University,2017. (in Chinese

    ZHANG Chenglong. Fatigue life evaluation and damage analysis of aeroengine low pressure compressor disk[D]. Shenyang: Northeastern University, 2017. (in Chinese)
    [3] JAW L C,MATTINGLY J D. Aircraft engine controls: design,system analysis,and health monitoring[M]. Reston,US: American Institute of Aeronautics and Astronautics,2009.
    [4] 王睿乾,潘林,李其橙,等. 基于机器学习的航空发动机导管CNC弯曲回弹预测及补偿[J]. 塑性工程学报,2021,28(7): 104-109. WANG Ruiqian,PAN Lin,LI Qicheng,et al. Prediction and compensation of springback for aero-engine pipes during CNC bending based on machine learning[J]. Journal of Plasticity Engineering,2021,28(7): 104-109. (in Chinese

    WANG Ruiqian, PAN Lin, LI Qicheng, et al. Prediction and compensation of springback for aero-engine pipes during CNC bending based on machine learning[J]. Journal of Plasticity Engineering, 2021, 28(7): 104-109. (in Chinese)
    [5] 钟诗胜,雷达,丁刚. 卷积和离散过程神经网络及其在航空发动机排气温度预测中的应用[J]. 航空学报,2012,33(3): 438-445. ZHONG Shisheng,LEI Da,DING Gang. Convolution sum discrete process neural network and its application in aeroengine exhausted gas temperature prediction[J]. Acta Aeronautica et Astronautica Sinica,2012,33(3): 438-445. (in Chinese

    ZHONG Shisheng, LEI Da, DING Gang. Convolution sum discrete process neural network and its application in aeroengine exhausted gas temperature prediction[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 438-445. (in Chinese)
    [6] 刘伟民,胡忠志. 一种基于神经网络的航空发动机剩余寿命预估方法[J]. 航空发动机,2021,47(3): 8-15. LIU Weimin,HU Zhongzhi. An aeroengine remaining useful life prediction method based on neural network[J]. Aeroengine,2021,47(3): 8-15. (in Chinese

    LIU Weimin, HU Zhongzhi. An aeroengine remaining useful life prediction method based on neural network[J]. Aeroengine, 2021, 47(3): 8-15. (in Chinese)
    [7] LOFTIS C,YUAN Kunpeng,ZHAO Yong,et al. Lattice thermal conductivity prediction using symbolic regression and machine learning[J]. The Journal of Physical Chemistry A,2021,125(1): 435-450. doi: 10.1021/acs.jpca.0c08103
    [8] 马忠,郭建胜,顾涛勇,等. 基于改进卷积神经网络的航空发动机剩余寿命预测[J]. 空军工程大学学报(自然科学版),2020,21(6): 19-25. MA Zhong,GUO Jiansheng,GU Taoyong,et al. A remaining useful life prediction for aero-engine based on improved convolution neural networks[J]. Journal of Air Force Engineering University (Natural Science Edition),2020,21(6): 19-25. (in Chinese

    MA Zhong, GUO Jiansheng, GU Taoyong, et al. A remaining useful life prediction for aero-engine based on improved convolution neural networks[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(6): 19-25. (in Chinese)
    [9] 张弛,付相君,周先颖,等. 基于MLP的相关路段流量预测模型[J]. 重庆理工大学学报(自然科学),2021,35(8): 129-135. ZHANG Chi,FU Xiangjun,ZHOU Xianying,et al. Traffic flow forecasting model of correlated roads based on MLP[J]. Journal of Chongqing University of Technology (Natural Science),2021,35(8): 129-135. (in Chinese

    ZHANG Chi, FU Xiangjun, ZHOU Xianying, et al. Traffic flow forecasting model of correlated roads based on MLP[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(8): 129-135. (in Chinese)
    [10] 吕永生,钱吉生,韩建平,等. 应用人工神经网络技术建立航空配餐微生物生长模型[J]. 食品科技,2010,35(4): 104-107,113. LÜ Yongsheng,QIAN Jisheng,HAN Jianping,et al. Development of microbiological growth model for flight catering with the technology of artificial neural networks[J]. Food Science and Technology,2010,35(4): 104-107,113. (in Chinese

    LÜ Yongsheng, QIAN Jisheng, HAN Jianping, et al. Development of microbiological growth model for flight catering with the technology of artificial neural networks[J]. Food Science and Technology, 2010, 35(4): 104-107, 113. (in Chinese)
    [11] 丁雪松,黄立群,张步忠,等. 基于多层感知机的蛋白质变性温度预测[J]. 计算机应用研究,2019,36(8): 2421-2423. DING Xuesong,HUANG Liqun,ZHANG Buzhong,et al. Using multi-layer perceptron to predict protein melting temperature[J]. Application Research of Computers,2019,36(8): 2421-2423. (in Chinese

    DING Xuesong, HUANG Liqun, ZHANG Buzhong, et al. Using multi-layer perceptron to predict protein melting temperature[J]. Application Research of Computers, 2019, 36(8): 2421-2423. (in Chinese)
    [12] KRUSE R,BORGELT C,KLAWONN F,et al. Multi-layer perceptrons[M]//Computational Intelligence. London,UK: Springer,2013: 47-81.
    [13] 刘苗苗,蒋艳. 基于改进多层感知机模型的港口吞吐量预测研究[J]. 软件工程,2021,24(3): 39-42,35. LIU Miaomiao,JIANG Yan. Research on port throughput forecast based on improved multilayer perceptron model[J]. Software Engineering,2021,24(3): 39-42,35. (in Chinese

    LIU Miaomiao, JIANG Yan. Research on port throughput forecast based on improved multilayer perceptron model[J]. Software Engineering, 2021, 24(3): 39-42, 35. (in Chinese)
    [14] DUMPALA S H,CHAKRABORTY R,KOPPARAPU S K. A novel data representation for effective learning in class imbalanced scenarios[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York,US: ACM,2018: 2100-2106.
    [15] 张有健,陈晨,王再见. 深度学习算法的激活函数研究[J]. 无线电通信技术,2021,47(1): 115-120. ZHANG Youjian,CHEN Chen,WANG Zaijian. Research on activation function of deep learnimg algorithm[J]. Radio Communications Technology,2021,47(1): 115-120. (in Chinese

    ZHANG Youjian, CHEN Chen, WANG Zaijian. Research on activation function of deep learnimg algorithm[J]. Radio Communications Technology, 2021, 47(1): 115-120. (in Chinese)
    [16] GLOROT X,BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[R]. Sardinia,Italy: International Conference on Artificial Intelligence and Statistics,2010.
    [17] 杨兴宇,朱锐锋,郑小梅,等. 航空燃气涡轮发动机寿命消耗监测技术及应用[C]//航空装备维修技术及应用研讨会论文集. 烟台,2015: 843-849.
    [18] 程都. 基于神经网络的航空发动机模型自适应修正[D]. 辽宁,大连: 大连理工大学,2019. CHENG Du. Adaptive correction of aeroengine model based on neural network[D]. Dalian,Liaoning: Dalian University of Technology,2019. (in Chinese

    CHENG Du. Adaptive correction of aeroengine model based on neural network[D]. Dalian, Liaoning: Dalian University of Technology, 2019. (in Chinese)
    [19] SINGH D,SINGH B. Investigating the impact of data normalization on classification performance[J]. Applied Soft Computing,2020,97: 105524. doi: 10.1016/j.asoc.2019.105524
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  88
  • HTML浏览量:  37
  • PDF量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-01
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回