留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机限寿件高效失效概率算法研究综述

李果 刘俊博 周惠敏 丁水汀

李果, 刘俊博, 周惠敏, 等. 航空发动机限寿件高效失效概率算法研究综述[J]. 航空动力学报, 2022, 37(11):2398-2407 doi: 10.13224/j.cnki.jasp.20220299
引用本文: 李果, 刘俊博, 周惠敏, 等. 航空发动机限寿件高效失效概率算法研究综述[J]. 航空动力学报, 2022, 37(11):2398-2407 doi: 10.13224/j.cnki.jasp.20220299
LI Guo, LIU Junbo, ZHOU Huimin, et al. Review on efficient algorithm of failure probability for aero-engine life limited parts[J]. Journal of Aerospace Power, 2022, 37(11):2398-2407 doi: 10.13224/j.cnki.jasp.20220299
Citation: LI Guo, LIU Junbo, ZHOU Huimin, et al. Review on efficient algorithm of failure probability for aero-engine life limited parts[J]. Journal of Aerospace Power, 2022, 37(11):2398-2407 doi: 10.13224/j.cnki.jasp.20220299

航空发动机限寿件高效失效概率算法研究综述

doi: 10.13224/j.cnki.jasp.20220299
详细信息
    作者简介:

    李果(1983-),男,副教授、博士生导师,博士,主要从事航空发动机安全性与适航研究

    通讯作者:

    刘俊博(1992-),男,博士生,主要从事航空发动机限寿件安全性机理评估研究。E-mail:liujunbo@buaa.edu.cn

  • 中图分类号: V239

Review on efficient algorithm of failure probability for aero-engine life limited parts

  • 摘要:

    综述了为提高失效概率计算效率的研究成果,包括基于抽样的高效失效概率算法和基于积分的高效失效概率算法。其中,基于抽样的高效失效概率算法在传统蒙特卡洛模拟方法的基础上,通过重要性抽样方法在失效域抽样、最优抽样技术优化分区样本量、分区细化技术减少分区数量,从而减少蒙特卡洛模拟样本量。另外,基于积分的高效失效概率算法通过建立N次飞行循环与初始循环(N = 0)随机变量空间的映射关系,解决了时变失效区域中概率密度函数难以求解的困难。在与蒙特卡洛相对误差小于5% 条件下,积分算法时间成本降低了数十倍。

     

  • 图 1  钛合金硬α缺陷和粉末高温合金缺陷[2,26-27]

    Figure 1.  Hard-α inclusion in titanium and inclusion in powder superalloy [2,26-27]

    图 2  初始缺陷分布曲线[12]

    Figure 2.  Initial defect distribution curve[12]

    图 3  超声检出概率曲线[7]

    Figure 3.  Ultrasonic detection of probability curve[7]

    图 4  蒙特卡洛模拟方法流程图

    Figure 4.  Flow chart of Monte Carlo simulation

    图 5  积分失效域示意图[15]

    Figure 5.  Schematic diagram of failure domain for integral[15]

    图 6  分区细化过程[18]

    Figure 6.  Zone refinement process[18]

    图 7  数值积分结果与蒙特卡洛模拟对比[19]

    Figure 7.  Numerical integration results compared with Monte Carlo simulation[19]

    图 8  逆向求解裂纹扩展示意图[20]

    Figure 8.  Inverse crack growth solution considering multivariate[20]

    图 9  变量个数对失效概率计算时间的影响[20]

    Figure 9.  Influence of number of variables on failure probability computation time[20]

    图 10  考虑无损检测的积分算法原理示意图[38]

    Figure 10.  Principle Schematic of integration algorithm considering nondestructive inspection[38]

  • [1] CHAMIS C C. Damage tolerance and reliability of turbine engine components[R]. NASA/TP-1999-209878, 1999.
    [2] WU Y T,ENRIGHT M P,MILLWATER H R. Probabilistic methods for design assessment of reliability with inspection[J]. AIAA Journal,2002,40(5): 937-946. doi: 10.2514/2.1730
    [3] ENRIGHT M P,HUYSE L. Methodology for probabilistic life prediction of multiple-anomaly materials[J]. AIAA Journal,2006,44(4): 787-793. doi: 10.2514/1.17142
    [4] ENRIGHT M P,HUDAK S J,MCCLUNG R C,et al. Application of probabilistic fracture mechanics to prognosis of aircraft engine components[J]. AIAA Journal,2006,44(2): 311-316. doi: 10.2514/1.13142
    [5] Federal Aviation Administration. Advisory circular 33.70-1: guidance material for aircraft engine-life-limited parts requirements[R]. Washington, US: Department of Transportation, 2009.
    [6] Federal Aviation Administration. Advisory circular 33.70-2: damage tolerance of hole features in high-energy turbine engine rotors[R]. Washington, US: Department of Transportation, 2009.
    [7] Federal Aviation Administration. Advisory circular 33.14-1: damage tolerance for high energy turbine engine rotors[R]. Washington, US: Department of Transportation, 2009.
    [8] 李家祥. 航空发动机适航规定: CCAR-33R2[S]. 北京: 中国民用航空局, 2011.
    [9] European Aviation Safety Agency. Certification specifications and acceptable means of compliance for large aero planes, amendment[EB/OL]. [2022-04-29]. https://www.easa.europa.eu/document-library/certification-specifications/cs-e-amendment.
    [10] 丁水汀,周惠敏,刘俊博,等. 航空发动机限寿件表面特征概率损伤容限评估[J]. 航空动力学报,2021,36(2): 421-430. doi: 10.13224/j.cnki.jasp.2021.02.021

    DING Shuiting,ZHOU Huimin,LIU Junbo,et al. Probabilistic damage tolerance assessment of the surface features of aero engine life limited parts[J]. Journal of Aerospace Power,2021,36(2): 421-430. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.02.021
    [11] LEVERANT G R,MILLWATER H R,MCCLUNG R C,et al. A new tool for design and certification of aircraft turbine rotors[J]. Journal of Engineering for Gas Turbines and Power,2004,126(1): 155-159. doi: 10.1115/1.1622409
    [12] Sub-team to the Aerospace Industries Association Rotor Integrity Sub-committee. The development of anomaly distributions for aircraft engine titanium disk alloys[R]. Kissimmee, US: 38th Structures, Structural Dynamics, and Materials Conference, 1997.
    [13] WU Y T, MILLWATER H R, ENRIGHT M P. Efficient and accurate methods for probabilistic analysis of titanium rotors[R]. South Bend, US: 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 2000.
    [14] ENRIGHT M P, MCCLUNG R C, LIANG W, et al. A tool for probabilistic damage tolerance of hole features in turbine engine rotors[R]. Copenhagen, Denmark: ASME Turbo Expo: Turbine Technical Conference and Exposition, 2012.
    [15] HUYSE L, ENRIGHT M P. Efficient statistical analysis of failure risk in engine rotor disks using importance sampling techniques[R]. AIAA 2003-1838, 2003.
    [16] ENRIGHT M P,MILLWATER H R,HUYSE L. Adaptive optimal sampling methodology for reliability prediction of series systems[J]. AIAA Journal,2006,44(3): 523-528. doi: 10.2514/1.11290
    [17] ENRIGHT M P, MILLWATER H R. Optimal sampling techniques for zone-based probabilistic fatigue life prediction[R]. AIAA 2002-1383, 2002.
    [18] MILLWATER H R, ENRIGHT M P, FITCH S. A convergent probabilistic technique for risk assessment of gas turbine disks subject to metallurgical defects[R]. AIAA 2002-1382, 2002.
    [19] YANG L,DING S,WANG Z,et al. Efficient probabilistic risk assessment for aeroengine turbine disks using probability density evolution[J]. AIAA Journal,2017,55(8): 2755-2761. doi: 10.2514/1.J055237
    [20] LIU J B, DING S T, LI G. Influence of random variable dimension on the fast numerical integration method of aero engine rotor disk failure risk analysis[R]. Virtual: ASME International Mechanical Engineering Congress and Exposition, 2020.
    [21] DING S,WANG Z,QIU T,et al. Probabilistic failure risk assessment for aeroengine disks considering a transient process[J]. Aerospace Science and Technology,2018,78: 696-707. doi: 10.1016/j.ast.2018.05.017
    [22] MILLWATER H R, FITCH S, WU Y T, et al. A probabilistically-based damage tolerance analysis computer program for hard alpha anomalies in titanium rotors[R]. Munich, Germany: ASME Turbo Expo: Power for Land, Sea, and Air, 2000.
    [23] TRYON R, MATTHEWS R. Integrated processing and probabilistic lifing models for superalloy turbine disks[R]. AIAA 2011-1739, 2011.
    [24] ENRIGHT M P,MCCLUNG R C. A probabilistic framework for gas turbine engine materials with multiple types of anomalies[J]. Journal of Engineering for Gas Turbines and Power,2011,133(8): 1-10.
    [25] CORRAN R, GORELIK M, LEHMANN D, et al. The development of anomaly distributions for machined holes in aircraft engine rotors[R]. Barcelona, Spain: ASME Turbo Expo: Power for Land, Sea, and Air, 2006.
    [26] MCCLUNG R C, ENRIGHT M P, LIANG W W. Integration of NASA-developed lifing technology for PM alloys into DARWIN®[R]. San Antonio, US: Southwest Research Institute, 2011.
    [27] 周晓明. 粉末高温合金中非金属夹杂物的遗传特征及损伤力学行为研究[D]. 北京: 北京航空材料研究院, 2006.

    ZHOU Xiaoming. Genetic characteristic and damage mechanical behavior of non-metallic inclusions in P/M superalloy[D]. Beijing: Beijing Institute of Aeronautical Materials, 2006. (in Chinese)
    [28] PARIS P,ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering,1963,85(4): 528-533.
    [29] NEWMAN J C. Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads[M]. Hampton, US: Langley Research Center, National Aeronautics and Space Administration, 1984.
    [30] GLINKA G,SHEN G. Universal features of weight functions for cracks in mode I[J]. Engineering Fracture Mechanics,1991,40(6): 1135-1146. doi: 10.1016/0013-7944(91)90177-3
    [31] ZHOU H M, DING S T, GUO L. Universal weight function method on the probabilistic surface damage tolerance assessment of aeroengine rotors[R]. Virtual: ASME International Mechanical Engineering Congress and Exposition, 2020.
    [32] WU X R. A review and verification of analytical weight function methods in fracture mechanics[J]. Fatigue Fracture Engineering Materials and Structure,2019,42(9): 1-26.
    [33] WU Y T J, ZHAO J, SHIAO M, et al. Efficient methods for probabilistic damage tolerance inspection optimization[R]. AIAA 2010-2518, 2010.
    [34] SHOOK B, MILLWATER H R, HU D K S, et al. Comparison of continual on-board inspections to a single mid-life inspection for gas turbine engine disks[R]. AIAA 2005-2215, 2005.
    [35] ENRIGHT M P,MCCLUNG R C. A probabilistic framework for gas turbine engine materials with multiple types of anomalies[J]. Journal of Engineering for Gas Turbines and Power,2011,133(8): 082502.1-082502.10.
    [36] 张弓,周燕佩,丁水汀. 面向适航要求的涡轮发动机限寿件概率失效风险评估方法[J]. 航空动力学报,2015,30(10): 2338-2042. doi: 10.13224/j.cnki.jasp.2015.10.006

    ZHANG Gong,ZHOU Yanpei,DING Shuiting. Probabilistic failure risk assessment method of turbine engine life limited parts for airworthiness requirements[J]. Journal of Aerospace Power,2015,30(10): 2338-2042. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.10.006
    [37] LI J,CHEN J. The principle of preservation of probability and the generalized density evolution equation[J]. Structural Safety,2008,30(1): 65-77. doi: 10.1016/j.strusafe.2006.08.001
    [38] 李果, 丁水汀, 刘俊博, 等. 一种基于概率密度演化理论的概率失效风险评估高效计算方法: ZL 2018 1 1135082.5[P]. 2021-01-08.
    [39] LI G,LIU J,ZHOU H,et al. Efficient numerical integration algorithm of probabilistic risk assessment for aero-engine rotors considering in-service inspection uncertainties[J]. Aerospace,2022,9(9): 525.1-525.18.
  • 加载中
图(10)
计量
  • 文章访问数:  220
  • HTML浏览量:  85
  • PDF量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 网络出版日期:  2022-09-21

目录

    /

    返回文章
    返回