留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑相变诱导塑性下40Cr激光淬火工艺参数显著性分析

李昌 邓双九 高鹤芯 韩兴

李昌, 邓双九, 高鹤芯, 等. 考虑相变诱导塑性下40Cr激光淬火工艺参数显著性分析[J]. 航空动力学报, 2024, 39(4):20220303 doi: 10.13224/j.cnki.jasp.20220303
引用本文: 李昌, 邓双九, 高鹤芯, 等. 考虑相变诱导塑性下40Cr激光淬火工艺参数显著性分析[J]. 航空动力学报, 2024, 39(4):20220303 doi: 10.13224/j.cnki.jasp.20220303
LI Chang, DENG Shuangjiu, GAO Hexin, et al. Significance of 40Cr laser quenching process parameters considering transformation induced plasticity[J]. Journal of Aerospace Power, 2024, 39(4):20220303 doi: 10.13224/j.cnki.jasp.20220303
Citation: LI Chang, DENG Shuangjiu, GAO Hexin, et al. Significance of 40Cr laser quenching process parameters considering transformation induced plasticity[J]. Journal of Aerospace Power, 2024, 39(4):20220303 doi: 10.13224/j.cnki.jasp.20220303

考虑相变诱导塑性下40Cr激光淬火工艺参数显著性分析

doi: 10.13224/j.cnki.jasp.20220303
基金项目: 辽宁省高等学校创新人才支持计划(20201020)
详细信息
    作者简介:

    李昌(1980-),男,教授、硕士生导师,博士,研究方向为机械可靠性工程、多能场复合激光先进制造、焊接可靠性、超声速喷涂、航空轴承使役损伤机理及可靠性试验方法。E-mail:lichang2323-23@163.com

  • 中图分类号: V252.1;TG156.3

Significance of 40Cr laser quenching process parameters considering transformation induced plasticity

  • 摘要:

    定量化揭示激光淬火过程多场耦合瞬时演变规律,进而实现40Cr激光淬火工艺参数显著性分析。基于相图计算法(CALPHAD)计算温变物性参数,建立40Cr齿轮钢激光淬火数值模型,对瞬态温度、相变以及应力分布进行数值计算,揭示相变行为与塑性应力之间的耦合作用机理。通过Axio Vert.A1显微镜、扫描电子显微镜(SEM)、超景深3D显微镜和显微硬度仪进行分析。基于正交试验,分析了激光半径、激光功率、扫描速度对淬火质量的显著性影响。结果表明:影响最高温度和相变深度的显著工艺参数依次为光斑直径、扫描速度、激光功率;残余应力成“驼峰”分布,影响残余拉应力的显著工艺参数依次为光斑直径、激光功率、扫描速度。该研究为有效控制淬火残余应力,优化工艺参数提供重要理论依据。

     

  • 图 1  激光淬火原理图

    Figure 1.  Schematic diagram of laser quenching

    图 2  激光淬火过程多场耦合作用机理

    Figure 2.  Mechanism of multi-field coupling in the laser quenching

    图 3  40Cr相变曲线与物性参数温度变化曲线

    Figure 3.  Phase transition curves and temperature variation curves of physical parameters for 40Cr

    图 4  模型网格划分

    Figure 4.  Model meshing

    图 5  光源类型及扫描路径

    Figure 5.  Light source type and scanning path

    图 6  不同时刻激光淬火温度场分布云图

    Figure 6.  Distribution cloud map of laser quenching temperature field at different moments

    图 7  数据采集路径

    Figure 7.  Data collection line

    图 8  工件淬火过程中的温度变化曲线

    Figure 8.  Temperature change curve during the quenching process of the workpiece

    图 9  t=1200 s时各相分布

    Figure 9.  Distribution of each phase at t=1200 s

    图 10  不同时刻相变层分布云图

    Figure 10.  Cloud map of phase change layer distribution at different moments

    图 11  激光淬火过程不同时刻应力瞬态分布

    Figure 11.  Transient stress distribution at different moments in the laser quenching process

    图 12  激光淬火过程中不同时刻塑性应力变化曲线

    Figure 12.  Plastic stress curve at different moments in the laser quenching process

    图 13  40Cr激光淬火试样

    Figure 13.  40Cr laser quenched sample

    图 14  激光淬火硬化层剖面形貌与数值模拟结果对比

    Figure 14.  Comparison of the profile morphology of laser quenching hardened layer and numerical simulation results

    图 15  40Cr硬化层剖面显微组织

    Figure 15.  Microstructure of 40Cr hardened layer profile

    图 16  40Cr硬化层剖面显微硬度值

    Figure 16.  40Cr hardened layer profile microhardness value

    图 17  40Cr真应力-真应变曲线

    Figure 17.  True stress-strain curve of 40Cr

    图 18  数值模拟与试验测量硬度值对比图

    Figure 18.  Comparison of hardness values by numerical simulation and experiment measurement

    表  1  40Cr元素组成

    Table  1.   Element composition of 40Cr

    元素 质量分数/%
    C 0.37~0.45
    Cr 0.8~1.1
    Mn 0.5~0.8
    Si 0.17~0.37
    Cu ≤0.020
    Ni ≤0.034
    S ≤0.030
    P ≤0.030
    下载: 导出CSV

    表  2  数值模拟与试验测量结果

    Table  2.   Numerical simulation and experimental measurement results

    序号激光功率/W扫描速度/(mm/s)光斑直径/mm数值模拟残余应变数值模拟显微硬度/HV0.2试验数据/HV0.2
    128004590.393856.22851
    2280050100.370774.08789
    3280055110.331725.66717
    4290045100.394779.91795
    5290050110.422710.57703
    629005590.385832.89831
    7300045110.403946.16729
    830005090.410820.02834
    9300055100.427801.24788
    下载: 导出CSV

    表  3  数值模拟与试验测量硬度值对比

    Table  3.   Comparison of hardness values by numerical simulation and experiment measurement

    序号 等效塑性
    应变
    数值模拟显微
    硬度/HV0.2
    试验数据/
    HV0.2
    误差/%
    1 0.297 756 780 2.97
    2 0.368 774.08 760 1.85
    3 0.327 839.66 863 3.05
    4 0.42 779.91 807 3.35
    5 0.424 780.57 751 3.94
    下载: 导出CSV

    表  4  40Cr激光淬火试验参数

    Table  4.   40Cr laser quenching test parameters

    参数 因素 水平
    1 2 3
    激光功率/W A 2800 2900 3000
    扫描速度/(mm/s) B 45 50 55
    光斑直径/mm C 9 10 11
    下载: 导出CSV

    表  5  激光淬火正交试验方案设计和极差分析

    Table  5.   Laser quenching orthogonal test scheme design and range analysis

    序号 因素A 因素B 因素C 空列 温度/K 相变深度/μm 残余拉应力/MPa
    1 2800 45 9 1 1683 223.847 541
    2 2800 50 10 2 1340 187.256 469
    3 2800 55 11 3 1006 141.003 393
    4 2900 45 10 3 1481 212.514 507
    5 2900 50 11 1 1164 171.804 429
    6 2900 55 9 2 1580 216.906 536
    7 3000 45 11 2 1293 179.297 458
    8 3000 50 9 3 1805 229.036 557
    9 3000 55 10 1 1377 190.944 496
    K1j 1343.000 1485.667 1689.333 1408.000
    K2j 1408.333 1436.333 1399.333 1404.333
    K3j 1491.667 1321.000 1154.333 1430.667
    Rj 148.667 164.667 535.000
    U1j 184.035 205.219 223.263 195.532
    U2j 200.408 196.032 196.905 194.486
    U3j 199.759 182.951 164.035 194.184
    Tj 16.373 22.268 59.228
    M1j 467.667 502.000 544.667 488.667
    M2j 490.667 485.000 490.667 487.667
    M3j 503.667 475.000 426.667 485.667
    Sj 36.000 27.000 118.000
    下载: 导出CSV

    表  6  温度的方差分析

    Table  6.   Temperature analysis of variance

    方差来源 离差平方和 自由度 均方和 F Fa 显著性
    A 33314.667 2 16657.334 27.292 F0.05(2,2)=19.000 *
    B 42850.667 2 21425.334 35.104 F0.05(2,2)=19.000 *
    C 430350.000 2 215175.000 352.553 F0.01(2,2)=99.000 **
    下载: 导出CSV

    表  7  相变深度方差分析表

    Table  7.   Phase transition depth analysis of variance table

    方差来源 离差平方和 自由度 均方和 F Fa 显著性
    A 515.719 2 257.8595 171.964 F0.01(2,2)=99.000 **
    B 751.398 2 375.699 250.550 F0.01(2,2)=99.000 **
    C 5283.194 2 2641.597 1761.652 F0.01(2,2)=99.000 **
    下载: 导出CSV

    表  8  残余拉应力方差分析表

    Table  8.   Residual tensile stress variance analysis table

    方差来源 离差平方和 自由度 均方和 F Fa 显著性
    A 1994.000 2 997.000 142.429 F0.01(2,2)=99.000 **
    B 1118.000 2 559.000 79.857 F0.05(2,2)=19.000 *
    C 20936.000 2 10468.000 1495.429 F0.01(2,2)=99.000 **
    下载: 导出CSV
  • [1] CHEN Zhaoyun,ZHOU Guijuan,CHEN Zhonghua. Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching[J]. Materials Science and Engineering: A,2012,534: 536-541. doi: 10.1016/j.msea.2011.12.004
    [2] SARVESTANI E S,REZAEIZADEH M,JOMEHZADEH E,et al. Early detection of industrial-scale gear tooth surface pitting using vibration analysis[J]. Journal of Failure Analysis and Prevention,2020,20(3): 768-788. doi: 10.1007/s11668-020-00874-1
    [3] 张国祥,姚东伟. 激光淬火基体对镀铬层界面剪切强度的影响[J]. 激光技术,2012,36(4): 527-531. ZHANG Guoxiang,YAO Dongwei. Effect of laser-quenching substrate on interfacial shear strength of chromium plated coatings[J]. Laser Technology,2012,36(4): 527-531. (in Chinese

    ZHANG Guoxiang, YAO Dongwei. Effect of laser-quenching substrate on interfacial shear strength of chromium plated coatings[J]. Laser Technology, 2012, 36(4): 527-531. (in Chinese)
    [4] 郭卫,张汉杰,柴蓉霞. 27SiMn钢表面激光淬火数值模拟及实验验证[J]. 应用激光,2019,39(3): 482-489. GUO Wei,ZHANG Hanjie,CHAI Rongxia. Numerical simulation and experimental verification of laser quenching on 27SiMn steel surface[J]. Applied Laser,2019,39(3): 482-489. (in Chinese doi: 10.14128/j.cnki.al.20193903.482

    GUO Wei, ZHANG Hanjie, CHAI Rongxia. Numerical simulation and experimental verification of laser quenching on 27SiMn steel surface[J]. Applied Laser, 2019, 39(3): 482-489. (in Chinese) doi: 10.14128/j.cnki.al.20193903.482
    [5] LESYK D A,MARTINEZ S,MORDYUK B N,et al. Combining laser transformation hardening and ultrasonic impact strain hardening for enhanced wear resistance of AISI 1045 steel[J]. Wear,2020,462/463: 203494. doi: 10.1016/j.wear.2020.203494
    [6] BIRYUKOV V P,SOKOLOV S N,SAVIN A P,et al. Influence of laser quenching modes on tribological characteristics of 40Cr steel[J]. IOP Conference Series: Materials Science and Engineering,2020,996(1): 012004. doi: 10.1088/1757-899X/996/1/012004
    [7] 陈正威,李昌,高兴,等. 考虑晶粒不均匀性的不锈钢激光淬火数值模拟[J]. 中国激光,2021,48(10): 1002109. CHEN Zhengwei,LI Chang,GAO Xing,et al. Numerical simulation on laser quenching of stainless steels with grain heterogeneity[J]. Chinese Journal of Lasers,2021,48(10): 1002109. (in Chinese doi: 10.3788/CJL202148.1002109

    CHEN Zhengwei, LI Chang, GAO Xing, et al. Numerical simulation on laser quenching of stainless steels with grain heterogeneity[J]. Chinese Journal of Lasers, 2021, 48(10): 1002109. (in Chinese) doi: 10.3788/CJL202148.1002109
    [8] MUTHUKUMARAN G,DINESH BABU P. Laser transformation hardening of various steel grades using different laser types[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,43(2): 103. doi: 10.1007/s40430-021-02854-4
    [9] SIDI-AHMED K,MAOUCHE B,GABI Y,et al. Numerical simulations and experimental investigation of laser hardening depth investigation via 3MA-eddy current technique[J]. Journal of Magnetism and Magnetic Materials,2022,550: 169046. doi: 10.1016/j.jmmm.2022.169046
    [10] 罗心磊,刘美红,黎振华,等. 不同热源模型对选区激光熔化18Ni300温度场计算结果的影响[J]. 中国激光,2021,48(14): 1402005. LUO Xinlei,LIU Meihong,LI Zhenhua,et al. Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300[J]. Chinese Journal of Lasers,2021,48(14): 1402005. (in Chinese doi: 10.3788/CJL202148.1402005

    LUO Xinlei, LIU Meihong, LI Zhenhua, et al. Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300[J]. Chinese Journal of Lasers, 2021, 48(14): 1402005. (in Chinese) doi: 10.3788/CJL202148.1402005
    [11] COLOMBINI E,SOLA R,PARIGI G,et al. Laser quenching of ionic nitrided steel: effect of process parameters on microstructure and optimization[J]. Metallurgical and Materials Transactions A,2014,45(12): 5562-5573. doi: 10.1007/s11661-014-2490-z
    [12] DA SILVA S L E F. Newton’s cooling law in generalised statistical mechanics[J]. Physica A: Statistical Mechanics and Its Applications,2021,565: 125539. doi: 10.1016/j.physa.2020.125539
    [13] 孙文强. 5CrNiMo钢激光表面淬火温度场数值模拟及硬化层均匀性研究[D]. 天津: 天津理工大学,2013. SUN Wenqiang. Simulation of temperature field during laser surface quenching and analysis of the homogeneity of hardened layer for 5CrNiMo[D]. Tianjin: Tianjin University of Technology,2013. (in Chinese

    SUN Wenqiang. Simulation of temperature field during laser surface quenching and analysis of the homogeneity of hardened layer for 5CrNiMo[D]. Tianjin: Tianjin University of Technology, 2013. (in Chinese)
    [14] 刘玉. 中碳钢淬火应力分布的测定和有限元模拟[D]. 上海: 上海交通大学,2017. LIU Yu. Measurements and finite element simulation of quenching stress distribution in medium carbon steels[D]. Shanghai: Shanghai Jiao Tong University,2017. (in Chinese

    LIU Yu. Measurements and finite element simulation of quenching stress distribution in medium carbon steels[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
    [15] KOHOUT J. Simple and precise description of the transformation kinetics and final structure of dual phase steels[J]. Materials,2021,14(7): 1781. doi: 10.3390/ma14071781
    [16] BUBNOFF D V,CARVALHO M M O,XAVIER C R,et al. Evaluation of martensite fraction in 1026 steel by infrared thermography combined with the koistinen-marburger model[J]. Materials Science Forum,2016,869: 411-415. doi: 10.4028/www.scientific.net/MSF.869.411
    [17] LEBLOND J B,DEVAUX J,DEVAUX J C. Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases[J]. International Journal of Plasticity,1989,5(6): 551-572. doi: 10.1016/0749-6419(89)90001-6
    [18] KHANNA K,GUPTA V K,NIGAM S P. Creep analysis in functionally graded rotating disc using tresca criterion and comparison with von-mises criterion[J]. Materials Today: Proceedings,2017,4(2): 2431-2438. doi: 10.1016/j.matpr.2017.02.094
    [19] MOCHIZUKI M,HAYASHI M,HATTORI T. Numerical analysis of welding residual stress and its verification using neutron diffraction measurement[J]. Journal of Engineering Materials and Technology,2000,122(1): 98-103. doi: 10.1115/1.482772
    [20] BADRISH C A,KOTKUNDE N,MAHALLE G,et al. Analysis of hot anisotropic tensile flow stress and strain hardening behavior for inconel 625 alloy[J]. Journal of Materials Engineering and Performance,2019,28(12): 7537-7553. doi: 10.1007/s11665-019-04475-4
    [21] TABOR D. The hardness of metals[M]. Oxford,UK: Oxford University Press,2000.
    [22] 边舫,苏国跃,孔凡亚,等. Inconel718合金的加工硬化行为[J]. 有色金属,2005(1): 1-3. BIAN Fang,SU Guoyue,KONG Fanya,et al. Work hardening behavior of inconel 718[J]. Nonferrous Metals,2005(1): 1-3. (in Chinese

    BIAN Fang, SU Guoyue, KONG Fanya, et al. Work hardening behavior of inconel 718[J]. Nonferrous Metals, 2005(1): 1-3. (in Chinese)
    [23] 路彦君. 镍基高温合金Inconel718微铣削残余应力与加工硬化研究[D]. 大连: 大连理工大学,2016. LU Yanjun. Researches on residual stress and work hardening on micro-milling nickel-base superalloy Inconel718[D]. Dalian: Dalian University of Technology,2016. (in Chinese

    LU Yanjun. Researches on residual stress and work hardening on micro-milling nickel-base superalloy Inconel718[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
  • 加载中
图(18) / 表(8)
计量
  • 文章访问数:  47
  • HTML浏览量:  41
  • PDF量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-03
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回