Cryogenic experimental study on the phase separation performance of screen channel liquid acquisition device
-
摘要:
为研究网幕通道式液体获取装置的运行性能,搭建了以液氮为工质的液体输运实验系统,研究了网幕通道在稳定运行工况和临界泡破失效工况下的相分离性能。获得了不同网幕规格、不同气体暴露长度下通道总压损与液体流量的变化规律,分析了通道相分离失效的临界压力以及最大液体获取流量。实验结果表明:通道总压降按照203×
1600 网、130×1100 网和325×2300 网的顺序逐渐增加,该趋势与多孔网幕自身的压降预测规律一致。网幕自身的泡破压力研究能够反映网幕通道的极限工作特性。实验证明在网幕规格的选择上,流动压损与泡破压力存在明显的博弈关系。重力因素对通道相分离性能的影响体现在重力静压损和气体覆盖率两方面,所获得的低温实验数据能够指导网幕通道的选型优化。-
关键词:
- 低温推进剂 /
- 网幕通道式液体获取装置 /
- 相分离特性 /
- 液体在轨管理 /
- 多孔网幕
Abstract:Gas-free liquid delivery experiments for liquid nitrogen were conducted to evaluate the performance of the screen channel liquid acquisition devices. The phase separation capability of the screen channel was investigated in detail under successful separation conditions and critical separation failure conditions. The influences of the total channel flow resistance and liquid flow rate of the channel under different screen specifications and the exposed length of the channel to gas phase were obtained, while the critical breakthrough failure pressure and the maximum achievable flow rate were analyzed. Experimental results indicated that the total pressure loss in the screen channel increased with the trend of 203×
1600 screen, 130×1100 screen, and 325×2300 screen. This trend of the channel flow resistance was similar to the trend of the screen pressure drop. The bubble point pressure tested for the porous screen can be directly applied to the dynamic separation processes of the screen channel. Moreover, experimental results indicated that there was a best choice of the screen specifications to balance between the flow resistance and the breakthrough failure threshold. The influence of the gravity on the separation performance was reflected on the caused static pressure loss and the gas coverage ration on the screen channel. The cryogenic experimental results may provide a guidance for practical application of the screen channel liquid acquisition devices. -
表 1 斜纹密纹网幕的结构参数
Table 1. Geometrical parameters of the screen samples
项目 网幕规格 130× 1100 203× 1600 325× 2300 经线直径/μm 71.0 50.0 32.6 纬线直径/μm 50.0 32.0 25.0 泡破孔径/μm 31.3 20.3 12.9 表 2 实验工质液氮在100 kPa下的物性
Table 2. Physical properties of liquid nitrogen at 100 kPa
工质 温度/K ρ/(kg/m3) μ/(mPa·s) σ/(mN/m) 液氮 77 806.59 0.161 8.90 -
[1] WANG Bin,QIN Xujin,JIANG Wenbin,et al. Numerical simulation on interface evolution and pressurization behaviors in cryogenic propellant tank on orbit[J]. Microgravity Science and Technology,2020,32(1): 59-68. doi: 10.1007/s12217-019-09734-6 [2] LI Zhangguo,ZHU Zhiqiang,LIU Qiusheng,et al. Simulating propellant reorientation of vehicle upper stage in microgravity environment[J]. Microgravity Science and Technology,2013,25(4): 237-241. doi: 10.1007/s12217-013-9351-z [3] HARTWIG J W. Propellant management devices for low-gravity fluid management: past,present,and future applications[J]. Journal of Spacecraft and Rockets,2017,54(4): 808-824. doi: 10.2514/1.A33750 [4] 王磊,厉彦忠,马原,等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报,2016,31(8): 2002-2009. WANG Lei,LI Yanzhong,MA Yuan,et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power,2016,31(8): 2002-2009. (in ChineseWANG Lei, LI Yanzhong, MA Yuan, et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009. (in Chinese) [5] HARTWIG J,DARR S. Influential factors for liquid acquisition device screen selection forcryogenic propulsion systems[J]. Applied Thermal Engineering,2014,66(1/2): 548-562. [6] HARTWIG J W,KAMOTANI Y. The static bubble point pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer,2016,101: 502-516. doi: 10.1016/j.ijheatmasstransfer.2016.05.024 [7] CAMAROTTI C,DENG O,DARR S,et al. Room temperature bubble point,flow-through screen,and wicking experiments for screen channel liquid acquisition devices[J]. Applied Thermal Engineering,2019,149: 1170-1185. doi: 10.1016/j.applthermaleng.2018.12.111 [8] DARR S R,HARTWIG J W,CHUNG J N. Flow-through-screen pressure drop model for screen channel liquid acquisition devices[J]. Journal of Porous Media,2019,22(9): 1177-1195. doi: 10.1615/JPorMedia.2019025071 [9] WANG Ye,YANG Guang,HUANG Yiye,et al. Analytical model of flow-through-screen pressure drop for metal wire screens considering the effects of pore structures[J]. Chemical Engineering Science,2021,229: 116037. doi: 10.1016/j.ces.2020.116037 [10] WANG Ye,LIN Yilin,YANG Guang,et al. Flow physics of wicking into woven screens with hybrid micro-/ nanoporous structures[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2021,37(7): 2289-2297. doi: 10.1021/acs.langmuir.0c02872 [11] 王晔,张婉雨,汪彬,等. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报,2022,73(3): 1102-1110. WANG Ye,ZHANG Wanyu,WANG Bin,et al. Analytical model of bubble point pressure for metal wire screens and experimental validation[J]. CIESC Journal,2022,73(3): 1102-1110. (in ChineseWANG Ye, ZHANG Wanyu, WANG Bin, et al. Analytical model of bubble point pressure for metal wire screens and experimental validation[J]. CIESC Journal, 2022, 73(3): 1102-1110. (in Chinese) [12] MA Yuan,ZIMNIK D,DREYER M,et al. Investigation on cryo-wicking performance within metallic weaves under superheated conditions for screen channel liquid acquisition devices (LADs)[J]. International Journal of Heat and Mass Transfer,2019,141: 530-541. doi: 10.1016/j.ijheatmasstransfer.2019.06.103 [13] ZHU Qingchun,GUO Weimin,ZHUAN Rui,et al. Cryogenic wicking of liquid nitrogen in the metallic screens with different weave densities[J]. International Journal of Heat and Mass Transfer,2022,183: 122208. doi: 10.1016/j.ijheatmasstransfer.2021.122208 [14] 朱庆春,周勇瑞,蒋玉婷,等. 推进剂液体获取装置中多孔筛网的阻力特性研究[J]. 低温与超导,2021,49(7): 38-44,73. ZHU Qingchun,ZHOU Yongrui,JIANG Yuting,et al. Study on the flow resistance characteristics of porous screens for propellant liquid acquisition device[J]. Cryogenics & Superconductivity,2021,49(7): 38-44,73. (in ChineseZHU Qingchun, ZHOU Yongrui, JIANG Yuting, et al. Study on the flow resistance characteristics of porous screens for propellant liquid acquisition device[J]. Cryogenics & Superconductivity, 2021, 49(7): 38-44, 73. (in Chinese) [15] CHATO D J,MCQUILLEN J B,MOTIL B J,et al. CFD simulation of pressure drops in liquid acquisition device channel with sub-cooled oxygen[J]. World Academy of Science,Engineering and Technology,2009,58: 146-151. [16] MCQUILLEN J B,CHATO D J,MOTIL B J,et al. Porous screen applied in liquid acquisition device channel and cfd simulation of flow in the channel[J]. Journal of Porous Media,2012,15(5): 429-437. doi: 10.1615/JPorMedia.v15.i5.30 [17] DARR S R,CAMAROTTI C F,HARTWIG J W,et al. Hydrodynamic model of screen channel liquid acquisition devices for in-space cryogenic propellant management[J]. Physics of Fluids,2017,29(1): 017101. doi: 10.1063/1.4973671 [18] WANG Ye,WANG Zheng,CHENG Xin,et al. Pressure-driven phase separation based on modified porous mesh for liquid management in microgravity[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2022,38(9): 2919-2927. doi: 10.1021/acs.langmuir.1c03392 [19] 王峥,王晔,金鑫,等. 网幕通道式液体获取装置的入口速度分布特性研究[J]. 真空与低温,2022,28(5): 556-564. WANG Zheng,WANG Ye,JIN Xin,et al. Investigation on the velocity distribution in screen-channel liquid acquisition device[J]. Vacuum and Cryogenics,2022,28(5): 556-564. (in Chinese doi: 10.3969/j.issn.1006-7086.2022.05.009WANG Zheng, WANG Ye, JIN Xin, et al. Investigation on the velocity distribution in screen-channel liquid acquisition device[J]. Vacuum and Cryogenics, 2022, 28(5): 556-564. (in Chinese) doi: 10.3969/j.issn.1006-7086.2022.05.009 [20] HARTWIG J W,DARR S R,MEYERHOFER P,et al. EDU liquid acquisition device outflow tests in liquid hydrogen: experiments and analytical modeling[J]. Cryogenics,2017,87: 85-95. doi: 10.1016/j.cryogenics.2017.09.001 [21] HARTWIG J W,CHATO D J,MCQUILLEN J B,et al. Screen channel liquid acquisition device outflow tests in liquid hydrogen[J]. Cryogenics,2014,64: 295-306. doi: 10.1016/j.cryogenics.2014.02.011 [22] 刘畅,肖泽宁,胡声超,等. 筛网通道液体获取装置压降模型及试验研究[J]. 导弹与航天运载技术,2021(1): 56-60. LIU Chang,XIAO Zening,HU Shengchao,et al. Study on pressure drop model of screen channel liquid acquisition device[J]. Missiles and Space Vehicles,2021(1): 56-60. (in ChineseLIU Chang, XIAO Zening, HU Shengchao, et al. Study on pressure drop model of screen channel liquid acquisition device[J]. Missiles and Space Vehicles, 2021(1): 56-60. (in Chinese) [23] HARTWIG J,MANN J A. Bubble point pressures of binary methanol/water mixtures in fine-mesh screens[J]. AIChE Journal,2014,60(2): 730-739. doi: 10.1002/aic.14293 -