留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网幕通道式液体获取装置相分离特性低温实验研究

王晔 杨光 金鑫 耑锐 任枫 汪彬 吴静怡

王晔, 杨光, 金鑫, 等. 网幕通道式液体获取装置相分离特性低温实验研究[J]. 航空动力学报, 2024, 39(12):20220304 doi: 10.13224/j.cnki.jasp.20220304
引用本文: 王晔, 杨光, 金鑫, 等. 网幕通道式液体获取装置相分离特性低温实验研究[J]. 航空动力学报, 2024, 39(12):20220304 doi: 10.13224/j.cnki.jasp.20220304
WANG Ye, YANG Guang, JIN Xin, et al. Cryogenic experimental study on the phase separation performance of screen channel liquid acquisition device[J]. Journal of Aerospace Power, 2024, 39(12):20220304 doi: 10.13224/j.cnki.jasp.20220304
Citation: WANG Ye, YANG Guang, JIN Xin, et al. Cryogenic experimental study on the phase separation performance of screen channel liquid acquisition device[J]. Journal of Aerospace Power, 2024, 39(12):20220304 doi: 10.13224/j.cnki.jasp.20220304

网幕通道式液体获取装置相分离特性低温实验研究

doi: 10.13224/j.cnki.jasp.20220304
基金项目: 国家自然科学基金重点项目(51936006); 中国航天科技集团第八研究院产学研合作基金资助项目(USCAST2020-15); 上海市科技计划项目(20YF1447900)
详细信息
    作者简介:

    王晔(1995-),女,工程师,博士,主要从事低温推进剂在轨管理、多孔介质流动与传热等方面的研究

    通讯作者:

    杨光(1988-),男,副教授,博士,主要从事低温流动与传热等方面的研究。E-mail:y_g@sjtu.edu.cn

  • 中图分类号: V511.6

Cryogenic experimental study on the phase separation performance of screen channel liquid acquisition device

  • 摘要:

    为研究网幕通道式液体获取装置的运行性能,搭建了以液氮为工质的液体输运实验系统,研究了网幕通道在稳定运行工况和临界泡破失效工况下的相分离性能。获得了不同网幕规格、不同气体暴露长度下通道总压损与液体流量的变化规律,分析了通道相分离失效的临界压力以及最大液体获取流量。实验结果表明:通道总压降按照203×1600网、130×1100网和325×2300网的顺序逐渐增加,该趋势与多孔网幕自身的压降预测规律一致。网幕自身的泡破压力研究能够反映网幕通道的极限工作特性。实验证明在网幕规格的选择上,流动压损与泡破压力存在明显的博弈关系。重力因素对通道相分离性能的影响体现在重力静压损和气体覆盖率两方面,所获得的低温实验数据能够指导网幕通道的选型优化。

     

  • 图 1  低温流体液体输运的可视化实验系统原理图

    Figure 1.  Schematic diagram of the visualization system of vapor-free liquid delivery

    图 2  低温流体液体输运的可视化实验系统实物图

    Figure 2.  Photograph of the visualized liquid delivery apparatus

    图 3  网幕通道和可视管路的实物图

    Figure 3.  Photograph of the screen channel section and the cryogenic visualization

    图 4  液体获取工况和泡破失效工况的实验图像

    Figure 4.  Photograph under the liquid acquisition condition and the separation failure condition

    图 5  斜纹密纹网幕的几何结构和扫描电镜图像

    Figure 5.  Schematic diagram and SEM image of the metal wire screens

    图 6  具有网幕通道的实验腔示意图

    Figure 6.  Schematic of the tank equipped with a screen channel LAD

    图 7  不同规格的网幕通道总压损随液体流量变化曲线

    Figure 7.  Measured pressure difference in the screen channel as a function of mass flow rate evaluated for various screen samples

    图 8  临界泡破压力的相分离实验结果与文献[11]的理论预测结果对比

    Figure 8.  Comparison between the measured bubble point pressure in the vapor-free liquid delivery experiments and the predicted value based on Ref. [11]

    图 9  不同规格的网幕通道在不同暴露长度下的临界液体获取流量

    Figure 9.  Critical mass flow rate at the breakthrough failure point evaluated for various screen samples and exposed length

    图 10  临界失效工况下不同规格网幕通道在不同暴露长度下的通道总压损与静压损占比

    Figure 10.  Total pressure loss of the screen channel and the ratio of the hydrostatic pressure loss at the critical separation failure point evaluated for various screen samples and exposed length

    表  1  斜纹密纹网幕的结构参数

    Table  1.   Geometrical parameters of the screen samples

    项目网幕规格
    130×1100203×1600325×2300
    经线直径/μm71.050.032.6
    纬线直径/μm50.032.025.0
    泡破孔径/μm31.320.312.9
    下载: 导出CSV

    表  2  实验工质液氮在100 kPa下的物性

    Table  2.   Physical properties of liquid nitrogen at 100 kPa

    工质 温度/K ρ/(kg/m3 μ/(mPa·s) σ/(mN/m)
    液氮 77 806.59 0.161 8.90
    下载: 导出CSV
  • [1] WANG Bin,QIN Xujin,JIANG Wenbin,et al. Numerical simulation on interface evolution and pressurization behaviors in cryogenic propellant tank on orbit[J]. Microgravity Science and Technology,2020,32(1): 59-68. doi: 10.1007/s12217-019-09734-6
    [2] LI Zhangguo,ZHU Zhiqiang,LIU Qiusheng,et al. Simulating propellant reorientation of vehicle upper stage in microgravity environment[J]. Microgravity Science and Technology,2013,25(4): 237-241. doi: 10.1007/s12217-013-9351-z
    [3] HARTWIG J W. Propellant management devices for low-gravity fluid management: past,present,and future applications[J]. Journal of Spacecraft and Rockets,2017,54(4): 808-824. doi: 10.2514/1.A33750
    [4] 王磊,厉彦忠,马原,等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报,2016,31(8): 2002-2009. WANG Lei,LI Yanzhong,MA Yuan,et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power,2016,31(8): 2002-2009. (in Chinese

    WANG Lei, LI Yanzhong, MA Yuan, et al. On-orbit refilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009. (in Chinese)
    [5] HARTWIG J,DARR S. Influential factors for liquid acquisition device screen selection forcryogenic propulsion systems[J]. Applied Thermal Engineering,2014,66(1/2): 548-562.
    [6] HARTWIG J W,KAMOTANI Y. The static bubble point pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer,2016,101: 502-516. doi: 10.1016/j.ijheatmasstransfer.2016.05.024
    [7] CAMAROTTI C,DENG O,DARR S,et al. Room temperature bubble point,flow-through screen,and wicking experiments for screen channel liquid acquisition devices[J]. Applied Thermal Engineering,2019,149: 1170-1185. doi: 10.1016/j.applthermaleng.2018.12.111
    [8] DARR S R,HARTWIG J W,CHUNG J N. Flow-through-screen pressure drop model for screen channel liquid acquisition devices[J]. Journal of Porous Media,2019,22(9): 1177-1195. doi: 10.1615/JPorMedia.2019025071
    [9] WANG Ye,YANG Guang,HUANG Yiye,et al. Analytical model of flow-through-screen pressure drop for metal wire screens considering the effects of pore structures[J]. Chemical Engineering Science,2021,229: 116037. doi: 10.1016/j.ces.2020.116037
    [10] WANG Ye,LIN Yilin,YANG Guang,et al. Flow physics of wicking into woven screens with hybrid micro-/ nanoporous structures[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2021,37(7): 2289-2297. doi: 10.1021/acs.langmuir.0c02872
    [11] 王晔,张婉雨,汪彬,等. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报,2022,73(3): 1102-1110. WANG Ye,ZHANG Wanyu,WANG Bin,et al. Analytical model of bubble point pressure for metal wire screens and experimental validation[J]. CIESC Journal,2022,73(3): 1102-1110. (in Chinese

    WANG Ye, ZHANG Wanyu, WANG Bin, et al. Analytical model of bubble point pressure for metal wire screens and experimental validation[J]. CIESC Journal, 2022, 73(3): 1102-1110. (in Chinese)
    [12] MA Yuan,ZIMNIK D,DREYER M,et al. Investigation on cryo-wicking performance within metallic weaves under superheated conditions for screen channel liquid acquisition devices (LADs)[J]. International Journal of Heat and Mass Transfer,2019,141: 530-541. doi: 10.1016/j.ijheatmasstransfer.2019.06.103
    [13] ZHU Qingchun,GUO Weimin,ZHUAN Rui,et al. Cryogenic wicking of liquid nitrogen in the metallic screens with different weave densities[J]. International Journal of Heat and Mass Transfer,2022,183: 122208. doi: 10.1016/j.ijheatmasstransfer.2021.122208
    [14] 朱庆春,周勇瑞,蒋玉婷,等. 推进剂液体获取装置中多孔筛网的阻力特性研究[J]. 低温与超导,2021,49(7): 38-44,73. ZHU Qingchun,ZHOU Yongrui,JIANG Yuting,et al. Study on the flow resistance characteristics of porous screens for propellant liquid acquisition device[J]. Cryogenics & Superconductivity,2021,49(7): 38-44,73. (in Chinese

    ZHU Qingchun, ZHOU Yongrui, JIANG Yuting, et al. Study on the flow resistance characteristics of porous screens for propellant liquid acquisition device[J]. Cryogenics & Superconductivity, 2021, 49(7): 38-44, 73. (in Chinese)
    [15] CHATO D J,MCQUILLEN J B,MOTIL B J,et al. CFD simulation of pressure drops in liquid acquisition device channel with sub-cooled oxygen[J]. World Academy of Science,Engineering and Technology,2009,58: 146-151.
    [16] MCQUILLEN J B,CHATO D J,MOTIL B J,et al. Porous screen applied in liquid acquisition device channel and cfd simulation of flow in the channel[J]. Journal of Porous Media,2012,15(5): 429-437. doi: 10.1615/JPorMedia.v15.i5.30
    [17] DARR S R,CAMAROTTI C F,HARTWIG J W,et al. Hydrodynamic model of screen channel liquid acquisition devices for in-space cryogenic propellant management[J]. Physics of Fluids,2017,29(1): 017101. doi: 10.1063/1.4973671
    [18] WANG Ye,WANG Zheng,CHENG Xin,et al. Pressure-driven phase separation based on modified porous mesh for liquid management in microgravity[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2022,38(9): 2919-2927. doi: 10.1021/acs.langmuir.1c03392
    [19] 王峥,王晔,金鑫,等. 网幕通道式液体获取装置的入口速度分布特性研究[J]. 真空与低温,2022,28(5): 556-564. WANG Zheng,WANG Ye,JIN Xin,et al. Investigation on the velocity distribution in screen-channel liquid acquisition device[J]. Vacuum and Cryogenics,2022,28(5): 556-564. (in Chinese doi: 10.3969/j.issn.1006-7086.2022.05.009

    WANG Zheng, WANG Ye, JIN Xin, et al. Investigation on the velocity distribution in screen-channel liquid acquisition device[J]. Vacuum and Cryogenics, 2022, 28(5): 556-564. (in Chinese) doi: 10.3969/j.issn.1006-7086.2022.05.009
    [20] HARTWIG J W,DARR S R,MEYERHOFER P,et al. EDU liquid acquisition device outflow tests in liquid hydrogen: experiments and analytical modeling[J]. Cryogenics,2017,87: 85-95. doi: 10.1016/j.cryogenics.2017.09.001
    [21] HARTWIG J W,CHATO D J,MCQUILLEN J B,et al. Screen channel liquid acquisition device outflow tests in liquid hydrogen[J]. Cryogenics,2014,64: 295-306. doi: 10.1016/j.cryogenics.2014.02.011
    [22] 刘畅,肖泽宁,胡声超,等. 筛网通道液体获取装置压降模型及试验研究[J]. 导弹与航天运载技术,2021(1): 56-60. LIU Chang,XIAO Zening,HU Shengchao,et al. Study on pressure drop model of screen channel liquid acquisition device[J]. Missiles and Space Vehicles,2021(1): 56-60. (in Chinese

    LIU Chang, XIAO Zening, HU Shengchao, et al. Study on pressure drop model of screen channel liquid acquisition device[J]. Missiles and Space Vehicles, 2021(1): 56-60. (in Chinese)
    [23] HARTWIG J,MANN J A. Bubble point pressures of binary methanol/water mixtures in fine-mesh screens[J]. AIChE Journal,2014,60(2): 730-739. doi: 10.1002/aic.14293
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  95
  • HTML浏览量:  38
  • PDF量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-03
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回