留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑热应力的冲击发散冷却结构参数敏感性分析及优化设计

李海旺 张大伟 由儒全

李海旺, 张大伟, 由儒全. 考虑热应力的冲击发散冷却结构参数敏感性分析及优化设计[J]. 航空动力学报, 2022, 37(11):2455-2464 doi: 10.13224/j.cnki.jasp.20220307
引用本文: 李海旺, 张大伟, 由儒全. 考虑热应力的冲击发散冷却结构参数敏感性分析及优化设计[J]. 航空动力学报, 2022, 37(11):2455-2464 doi: 10.13224/j.cnki.jasp.20220307
LI Haiwang, ZHANG Dawei, YOU Ruquan. Sensitivity analysis and optimal design of impingement/effusion cooling structural parameters considering thermal stress[J]. Journal of Aerospace Power, 2022, 37(11):2455-2464 doi: 10.13224/j.cnki.jasp.20220307
Citation: LI Haiwang, ZHANG Dawei, YOU Ruquan. Sensitivity analysis and optimal design of impingement/effusion cooling structural parameters considering thermal stress[J]. Journal of Aerospace Power, 2022, 37(11):2455-2464 doi: 10.13224/j.cnki.jasp.20220307

考虑热应力的冲击发散冷却结构参数敏感性分析及优化设计

doi: 10.13224/j.cnki.jasp.20220307
基金项目: 北京市自然基金(3222034)
详细信息
    作者简介:

    李海旺(1980−),男,教授、博士生导师,博士,主要从事高温旋转部件的流动与换热、高效冷却技术、微尺度动力系统等方面的研究

    通讯作者:

    由儒全(1991−),男,副研究员,博士,主要从事高温旋转部件的流动与换热测试、高效冷却技术等方面的研究。E-mail:youruquan10353@buaa.edu.cn

  • 中图分类号: V231.1

Sensitivity analysis and optimal design of impingement/effusion cooling structural parameters considering thermal stress

  • 摘要:

    针对涡轮叶片高效冷却和安全可靠的发展要求,基于代理模型的优化方法,对冲击发散冷却典型结构参数气膜孔倾斜角、气膜平板高度、冲击距、气膜孔与冲击孔孔间距、孔径比对冷却结构综合冷却效率和最大热应力特性进行敏感性因素分析,并以最大化冷效、同时提高冷效并降低最大热应力两种优化方案进行优化。研究结果表明:高热应力区域出现在气膜孔附近,气膜孔倾斜角是影响综合冷效及最大热应力的主要影响因素。综合冷却效率和最大热应力两个优化目标存在竞争关系。通过多目标结构优化,冲击发散冷却结构综合冷效提高2.9%,最大热应力降低12.5%。

     

  • 图 1  冲击/发散冷却示意图

    Figure 1.  Sketch map of impingement/effusion cooling

    图 2  研究模型及布局

    Figure 2.  Study model and hole arrangement

    图 3  计算域边界条件设置

    Figure 3.  Boundary conditions of numerical simulation

    图 4  网格无关性检验

    Figure 4.  Grid independence check

    图 5  热应力边界条件设置

    Figure 5.  Mechanical boundary conditions for thermal stress

    图 6  基于代理模型的优化流程

    Figure 6.  Optimization process based on surrogate model

    图 7  结构参数设计变量

    Figure 7.  Structural parameter design variables

    图 8  目标函数与结构参数的相关性

    Figure 8.  Correlation coefficient between objective function and structural parameter

    图 9  三维响应面

    Figure 9.  Three-dimensional response surface

    图 10  帕累托前沿优化解与DOE采样结果

    Figure 10.  Pareto optimal solutions and the DOE solutions

    图 11  不同结构综合冷却效率分布云图

    Figure 11.  Contours of overall cooling effectiveness of different cooling structures

    图 12  综合冷却效率展向平均分布图

    Figure 12.  Laterally averaged overall cooling effectiveness

    图 13  不同结构热应力分布云图

    Figure 13.  Contours of thermal stress of different cooling structures

    图 14  气膜孔孔边热应力分布图

    Figure 14.  Distribution of thermal stress near the film hole

    表  1  设计变量取值范围

    Table  1.   Limit of design variables

    几何参数参数范围基础结构值
    气膜孔倾角α/(°)30~6030
    气膜平板高度Hf/D1~32
    冲击距离Hi/D1~31.5
    孔间距P/D0~65
    孔径比Di/D0.8~1.21
    下载: 导出CSV

    表  2  基础结构和优化结构结果对比

    Table  2.   Results comparison of basic structure and optimized structure

    结构αHf/DHi/DP/DDi/D$\overline{\overline \phi } $${\sigma _{{\text{max}}}}$
    Base3021.5510.573663.0
    OPT_A30.032.252.022.350.800.595668.2
    OPT_B30.741.711.894.570.800.590155.1
    下载: 导出CSV

    表  3  代理模型与数值计算结果对比误差

    Table  3.   Error in surrogate model predictions compared to numerical results

    结构$\overline{\overline \phi }_{{{ {\text{Kriging} } } } }$$\overline{\overline \phi } _{ {\text{NC} } }$$\overline{\overline \phi } $
    误差/%
    ${\sigma _{{\text{Kriging}}}}$${\sigma _{{\text{NC}}}}$$\sigma $
    误差/%
    Base0.57360.57290.1263.0359.585.79
    OPT_A0.59560.59430.2268.2566.792.18
    OPT_B0.59010.58870.2455.1652.844.39
    下载: 导出CSV
  • [1] HAN J C, DUTTA S, EKKAD S. Gas turbine heat transfer and cooling technology[M]. Florida: CRC Press, Taylor & Francis Group, 2012.
    [2] NEALY D A,REIDER S B. Evaluation of laminated porous wall materials for combustor liner cooling[J]. Journal of Engineering for Gas Turbines and Power,1980,102(2): 268-276.
    [3] ANDREWS G E, ASERE A A, HUSSAIN C I, et al. Impingement/effusion cooling: overall wall heat transfer[R]. ASME Paper 88-GT-290, 1988.
    [4] ZHOU W,DENG Q,FENG Z. Conjugate heat transfer analysis for laminated cooling effectiveness: Part A effects of surface curvature[R]. ASME Paper GT2016-57243,2016.
    [5] AL DABAGH A M,ANDREWS G E,ABDUL HUSAIN R A A,et al. Impingement/effusion cooling: the influence of the number of impingement holes and pressure loss on the heat transfer coefficient[J]. Journal of Turbomachinery,1990,112(3): 467-476. doi: 10.1115/1.2927682
    [6] CHO H H,DONG H R. Local heat/mass transfer measurement on the effusion plate in impingement/effusion cooling systems[J]. Journal of Turbomachinery,2001,123(3): 601-608. doi: 10.1115/1.1344904
    [7] RHEE D H,YOON P H,CHO H H. Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spent air[J]. International Journal of Heat and Mass Transfer,2003,46(6): 1049-1061. doi: 10.1016/S0017-9310(02)00363-0
    [8] CHO H H,RHEE D H,GOLDSTEIN R J. Effects of hole arrangements on local heat/mass transfer for impingement/effusion cooling with small hole spacing[J]. Journal of Turbomachinery,2008,130(4): 041003.1-041003.11.
    [9] LI X, HE Y, MAO R, et al. Experimental investigations on cooling hole diameters of an impingement-effusion cooling system[R]. ASME Paper GT2014-26521, 2014.
    [10] TAN Xiaoming,ZHANG Jingzhou,XU Huasheng. Experimental investigation on impingement/effusion cooling with short normal injection holes[J]. International Communications in Heat and Mass Transfer,2015,69: 1-10. doi: 10.1016/j.icheatmasstransfer.2015.09.005
    [11] ZHOU W, DENG Q, HE W, et al. Effects of hole pitch to diameter ratio P/D of impingement and film hole on laminated cooling effectiveness[R]. ASME Paper GT2017-64566, 2017.
    [12] OH S H, LEE D H, KIM K M, et al. Enhanced cooling effectiveness in full-coverage film cooling system with impingement jets[C]// Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin: American Society of Mechanical Engineer, 2008: 735-744.
    [13] DENG Q, ZHOU W, FENG Z. Conjugate heat transfer analysis for laminated cooling effectiveness: Part B effects of film hole incline angle[R]. ASME Paper GT2016-57256, 2016.
    [14] ZHANG X D,LIU J J,AN B T. The influences of element layout and coolant ejection angle on overall cooling effectiveness of laminated cooling configuration[J]. International Journal of Heat and Mass Transfer,2016,101: 988-991. doi: 10.1016/j.ijheatmasstransfer.2016.04.104
    [15] RAO Y,LIU Y,WAN C. Multiple-jet impingement heat transfer in double-wall cooling structures with pin fins and effusion holes[J]. International Journal of Thermal Sciences,2018,133: 106-119. doi: 10.1016/j.ijthermalsci.2018.07.021
    [16] XIE G,LIU C,YE L,et al. Effects of impingement gap and hole arrangement on overall cooling effectiveness for impingement/effusion cooling[J]. International Journal of Heat and Mass Transfer,2020,152: 119449.1-119449.16.
    [17] CARTER T J. Common failures in gas turbine blades[J]. Engineering Failure Analysis,2005,12(2): 237-247. doi: 10.1016/j.engfailanal.2004.07.004
    [18] WANG J, XU H, LÜ X, et al. A numerical investigation on fluid-thermal-structure coupling characteristics of laminated film cooling configurations[C]// Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Orlando: American Society of Mechanical Engineer, 2009: 599-606.
    [19] KIM K M,MOON H,PARK J S,et al. Optimal design of impinging jets in an impingement/effusion cooling system[J]. Energy,2014,66: 839-848. doi: 10.1016/j.energy.2013.12.024
    [20] SKAMNIOTIS C,COCKS A C F. Designing against severe stresses at compound cooling holes of double wall transpiration cooled engine components[J]. Aerospace Science and Technology,2021,116: 106856.1-106856.24.
    [21] SKAMNIOTIS C,COURTIS M,COCKS A C F. Multiscale analysis of thermomechanical stresses in double wall transpiration cooling systems for gas turbine blades[J]. International Journal of Mechanical Sciences,2021,207: 106657.1-106657.20.
    [22] 王湛,张超,刘建军. 平板圆孔气膜冷却的热弹耦合分析[J]. 航空动力学报,2015,30(6): 1298-1306. doi: 10.13224/j.cnki.jasp.2015.06.003

    WANG Zhan,ZHANG Chao,LIU Jianjun. Thermoelastic coupling analysis of round-hole flat-plate film-cooling[J]. Journal of Aerospace Power,2015,30(6): 1298-1306. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.06.003
    [23] 王湛,张超. 平板气膜冷却热固耦合特性的分析[J]. 山东大学学报(工学版),2018,48(1): 65-70.

    WANG Zhan,ZHANG Chao. Analysis on thermal-solid coupling properity of flat-plate film cooling[J]. Journal of Shandong University (Engineering Science),2018,48(1): 65-70. (in Chinese)
    [24] HAN Z. Improving adjoint-based aerodynamic optimization via gradient-enhanced Kriging[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville: AIAA, 2012: 670.1-670.14.
    [25] JIANG Y T,WAN X C,MAGAGNATO F,et al. Multi-step optimizations of leading edge and downstream film cooling configurations on a high pressure turbine vane[J]. Applied Thermal Engineering,2018,134: 203-213. doi: 10.1016/j.applthermaleng.2018.02.012
    [26] JIANG Y T,LIN H F,YUE G Q,et al. Aero-thermal optimization on multi-rows film cooling of a realistic marine high pressure turbine vane[J]. Applied Thermal Engineering,2017,111: 537-549. doi: 10.1016/j.applthermaleng.2016.09.143
    [27] PARK S H,KANG Y J,SEO H J,et al. Experimental optimization of a fan-shaped film cooling hole with 30 degrees-injection angle and 6-hole length-to-diameter ratio[J]. International Journal of Heat and Mass Transfer,2019,144: 118652.1-118652.12.
    [28] 王洪纲. 热弹性力学概论[M]. 北京: 清华大学出版社, 1989.
    [29] DEES J E,BOGARD D G,LEDEZMA G A,et al. Experimental measurements and computational predictions for an internally cooled simulated turbine vane[J]. Journal of Turbomachinery,2012,134(6): 061003.1-061003.9.
    [30] MENSCH A,THOLE K A,CRAVEN B A. Conjugate heat transfer measurements and predictions of a blade endwall with a thermal barrier coating[J]. Journal of Turbomachinery,2014,136(12): 2167-2178.
    [31] LOEPPKY J L,SACKS J,WELCH W J. Choosing the sample size of a computer experiment: a practical guide[J]. Technometrics,2009,51(4): 366-376. doi: 10.1198/TECH.2009.08040
    [32] ZAR J H. Significance testing of the Spearman rank correlation coefficient[J]. Journal of the American Statistical Association,1972,67(339): 578-580. doi: 10.1080/01621459.1972.10481251
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  198
  • HTML浏览量:  63
  • PDF量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 网络出版日期:  2022-10-08

目录

    /

    返回文章
    返回