留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热障涂层隔热机理分析及有效性判据

刘洋 杜泽群 李海旺 由儒全

刘洋, 杜泽群, 李海旺, 等. 热障涂层隔热机理分析及有效性判据[J]. 航空动力学报, 2022, 37(11):2430-2439 doi: 10.13224/j.cnki.jasp.20220309
引用本文: 刘洋, 杜泽群, 李海旺, 等. 热障涂层隔热机理分析及有效性判据[J]. 航空动力学报, 2022, 37(11):2430-2439 doi: 10.13224/j.cnki.jasp.20220309
LIU Yang, DU Zequn, LI Haiwang, et al. Thermal insulation mechanism analysis and effectiveness criterion of thermal barrier coating[J]. Journal of Aerospace Power, 2022, 37(11):2430-2439 doi: 10.13224/j.cnki.jasp.20220309
Citation: LIU Yang, DU Zequn, LI Haiwang, et al. Thermal insulation mechanism analysis and effectiveness criterion of thermal barrier coating[J]. Journal of Aerospace Power, 2022, 37(11):2430-2439 doi: 10.13224/j.cnki.jasp.20220309

热障涂层隔热机理分析及有效性判据

doi: 10.13224/j.cnki.jasp.20220309
详细信息
    作者简介:

    刘洋(1997−),男,硕士生,主要从事涡轮叶片热障涂层隔热性能研究

    通讯作者:

    杜泽群(1998−),女,博士生,主要从事涡轮叶片高效冷却及热障涂层等方面的研究。E-mail:by2132127@buaa.edu.cn

  • 中图分类号: V231.1

Thermal insulation mechanism analysis and effectiveness criterion of thermal barrier coating

  • 摘要:

    建立了一维对流-导热模型,经理论推导、分析验证得到了热障涂层隔热有效性判据:当涂层热阻大于无涂层时高温燃气侧换热热阻时,涂层总能使叶片金属基体外表面温度降低,起到隔热效果;反之,则喷涂热障涂层(TBC)后外部燃气侧表面传热系数存在临界值,只有该表面传热系数小于临界值,热障涂层才能起到隔热效果,否则涂层起不到隔热效果,甚至会恶化叶片换热。热障涂层自身温降与有无涂层前后叶片金属基体外表面温降成比例关系,建立了以叶片金属基体外表面温度为基础的新的涂层隔热效果评价机制。

     

  • 图 1  一维理论换热模型

    Figure 1.  One-dimensional theoretical heat transfer model

    图 2  带热障涂层的叶片导热对流模型(单位:mm)

    Figure 2.  Thermal convection model of blade with thermal barrier coating (unit:mm)

    图 3  不带热障涂层的叶片导热对流模型(单位:mm)

    Figure 3.  Thermal convection model of blade without thermal barrier coating (unit:mm)

    图 4  带热障涂层叶片金属基体外表面温度${T'_{{\text{w}}2}}$${h'_1}$变化曲线 (${h_1} = 40\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ){\text{ }}\;,{h'_1} = 1$$ 100\;000\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ) $)

    Figure 4.  Curve of external surface temperature of blade metal substrate with thermal barrier coating ${T '_{{\text{w}}2}}$ varies with ${h '_1}$ (${h_1} = 40\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ){\text{ }}\;,{h'_1} = 1$$100\;000\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } )$)

    图 5  带热障涂层时叶片金属基体外表面温度${T '_{{\text{w}}2}}$${h '_1}$变化曲线 (${h_1} = 10\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } )\;,{h '_1} = 1$$40\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ) $)

    Figure 5.  Curve of external surface temperature of blade metal substrate with thermal barrier coating ${T '_{{\text{w}}2}}$ varies with ${h '_1}$ (${h_1} = 10\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ){\text{ }},{h '_1} = 1$$ 40\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ) $)

    图 6  ${h_1} = 40\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}})$时,温降比的计算值和理论值比较图

    Figure 6.  Comparison of calculated and theoretical values of temperature drop ratio,when ${h_1} = 40\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}} )$

    图 7  温降比的计算值和理论值比较图 (${h_1} = 10\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}} )$)

    Figure 7.  Comparison of calculated and theoretical values of temperature drop ratio (${h_1} = 10\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}} )$)

    表  1  换热模型参数

    Table  1.   Heat transfer model parameters

    参数类型真实叶片设计模型
    金属基体厚度/mm1.5~3.012.00
    涂层厚度/mm0.1~0.73.00
    金属基体
    导热系数/(${ {\text{W} } / {( { {\text{m} } \cdot {\text{K} } })} }$)
    20~251.02
    涂层导热系数/(${ {\text{W} } /{( { {\text{m} } \cdot {\text{K} } } )} }$)0.8~20.065
    涂层/金属基体
    厚度比
    0.05~0.50.25
    涂层/金属基体
    导热系数比
    0.04~0.080.07
    外换热系数/(${ {\text{W} } /{( { {\text{m} }^2 \cdot {\text{K} } })} }$)103~10410~40
    金属基体/涂层
    Bi数比
    0.1~1.5数量级一致
    叶片金属基体
    表面粗糙度/μm
    1.20尽可能光滑
    涂层表面粗糙度/μm4~73.2~8.0
    下载: 导出CSV

    表  2  边界条件

    Table  2.   Boundary conditions

    边界条件设置
    无涂层高温燃气侧对流边界条件: ${T_{\rm{g}}} = 493\;{\text{ K} }$, ${h_1} = { {10} / {40} }\;{ {\text{W} }/{( { { {\text{m} }^2} \cdot {\text{K} } } )} }$
    有涂层高温燃气侧对流边界条件:${T_{\rm{g}}} = 493\;{\text{ K} }$, ${h'_1} = 1 {\text{~}} 100\;000\;{\text{W/} }( { { {\text{m} }^{\text{2} } } \cdot {\text{K} } } )$
    内部冷却气侧对流边界条件:${T_{\rm{c}}} = 293\;{\text{ K} }$, ${h_2} = 20\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } )$
    其余边界对称面为周期性边界条件
    下载: 导出CSV

    表  3  ${T '_{{\text{w}}2}}$${h'_1}$变化曲线 (${h_1} = 40\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ){\text{ }},{h '_1} = 1{\text{~}}100\;000\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}} )$)

    Table  3.   ${T '_{{\text{w}}2}}$ variation curve with ${h '_1}$ (${h_1} = 40\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ),{\text{ }}{h'_1} = 1$$100\;000\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}} ) $)

    ${ { h'_1} } /({\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } }))$${ { { T '_{ {\text{w} }2} } } \mathord{\left/ {\vphantom { { { {T'}_{ {\text{w} }2} } } {\text{K} } } } \right. } {\text{K} } }$
    1304.127
    10352.394
    20371.207
    40385.922
    100397.746
    1000406.403
    10000407.348
    100000407.443
    下载: 导出CSV

    表  4  ${T '_{{\text{w}}2}}$${h'_1}$变化曲线 (${h_1} = 10\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } )\;,{h'_1} = 1$$ 40\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ) $)

    Table  4.   ${T'_{{\text{w}}2}}$ variation curve with ${h'_1}$ (${h_1} = 10\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } )\;,{h'_1} = 1$$ 40\;{\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ) $)

    ${ {h'_1} }/({\text{W} }/( { { {\text{m} }^2} \cdot {\text{K} } } ))$${ { { T'_{ {\text{w} }2} } } \mathord{\left/ {\vphantom { { { {T {\text{'} } }_{ {\text{w} }2} } } {\text{K} } } } \right. } {\text{K} } }$
    1304.127
    5333.099
    10352.394
    14.2857362.413
    18.5714369.347
    22.8571374.431
    40385.922
    下载: 导出CSV

    表  5  各参数随${h' _1}$变化结果 (${h_1} = 40\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}} )$)

    Table  5.   Change results of each parameter with ${h' _1}$ (${h_1} = 40\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}})$)

    ${ { { h'_1} } /{( { {\text{W} }/( { { {\text{m} }^{\text{2} } } \cdot {\text{K} } })})} }$${ { { T'_{ {\text{w} }2} } } \mathord{\left/ {\vphantom { { { {T'}_{ {\text{w} }2} } } {\text{K} } } } \right. } {\text{K} } }$${ { { T'_{ {\text{w3} } } } } \mathord{\left/ {\vphantom { { { {T'}_{ {\text{w3} } } } } {\text{K} } } } \right. } {\text{K} } }$$ {{\Delta {T_1}} \mathord{\left/ {\vphantom {{\Delta {T_1}} {\text{K}}}} \right. } {\text{K}}} $$ {{\Delta {T_2}} \mathord{\left/ {\vphantom {{\Delta {T_2}} {\text{K}}}} \right. } {\text{K}}} $温降比计算值温降比理论值
    1304.127312.468.333131.2360.0634962970.063492063
    10352.394396.79644.40282.9690.5351637360.535147392
    20371.207429.66858.46164.1560.9112319970.911196911
    40385.922455.37869.45649.4411.4048259541.404761905
    100397.746476.03778.29137.6172.0812664492.081128748
    1000406.403491.16484.76128.962.9268301102.926587302
    10000407.348492.81585.46728.0153.0507585223.050514451
    100000407.443492.98285.53927.923.0637177653.063486871
    下载: 导出CSV

    表  6  各参数随${h' _1}$变化结果 (${h_1} = 10\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}})$)

    Table  6.   Change results of each parameter with ${h' _1}$ (${h_1} = 10\;{\text{W/}}( {{{\text{m}}^{\text{2}}} \cdot {\text{K}}} )$)

    ${ { { h'_1} } /{({ {\text{W} }/( { { {\text{m} }^{\text{2} } } \cdot {\text{K} } } )} )} }$${ { { T'_{ {\text{w} }2} } } \mathord{\left/ {\vphantom { { { {T'}_{ {\text{w} }2} } } {\text{K} } } } \right. } {\text{K} } }$${ { { T'_{ {\text{w3} } } } } \mathord{\left/ {\vphantom { { { {T'}_{ {\text{w3} } } } } {\text{K} } } } \right. } {\text{K} } }$$ {{\Delta {T_1}} \mathord{\left/ {\vphantom {{\Delta {T_1}} {\text{K}}}} \right. } {\text{K}}} $$ {{\Delta {T_2}} \mathord{\left/ {\vphantom {{\Delta {T_2}} {\text{K}}}} \right. } {\text{K}}} $温降比计算值温降比理论值
    1304.127312.468.33365.2210.1277660.127758
    5333.099363.0829.98136.2490.8270850.827068
    10352.394396.79644.40216.9542.6189692.619048
    14.2857362.413414.30251.8896.9357.4821927.482961
    18.5714369.347426.41857.0710.001570711459181
    22.8571374.431435.360.869−5.083−11.975−11.9729
    40385.922455.37869.456−16.574−4.19066−4.19048
    100397.746476.03778.291−28.398−2.75692−2.75689
    1000406.403491.16484.761−37.055−2.28744−2.28738
    10000407.348492.81585.467−38−2.24913−2.24907
    100000407.443492.98285.539−38.095−2.24541−2.24531
    下载: 导出CSV
  • [1] 郭洪波,宫声凯,徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展,2009,28(9): 18-26.

    GUO Hongbo,GONG Shengkai,XU Huibin. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China,2009,28(9): 18-26. (in Chinese)
    [2] PRASERT P,XU H Z,YANG W S,et al. Numerical study of the effects of thermal barrier coating and turbulence intensity on cooling performances of a nozzle guide vane[J]. Energies,2017,10(3): 362-378. doi: 10.3390/en10030362
    [3] MAIKELL J, BOGARD D, PIGGUSH J, et al. Experimental simulation of a film cooled turbine blade leading edge including thermal barrier coating effects[R]. Orlando, US: ASME, 2009.
    [4] 杨晓军,许诺然,刘智刚. 污染物沉积和热障涂层脱落对气膜冷却效率影响的数值研究[J]. 推进技术,2013,34(10): 1362-1368. doi: 10.13675/j.cnki.tjjs.2013.10.014

    YANG Xiaojun,XU Nuoran,LIU Zhigang. Effects of deposition and thermal barrier coating spallation on film cooling effectiveness: a numerical study[J]. Journal of Propulsion Technology,2013,34(10): 1362-1368. (in Chinese) doi: 10.13675/j.cnki.tjjs.2013.10.014
    [5] LAWSON S A,THOLE K A,OKITA Y,et al. Simulations of multi-phase particle deposition on a showerhead with staggered film-cooling holes[J]. Journal of Turbomachinery,2012,134(5): 051041.1-051041.12.
    [6] ALBERT J E,BOGARD D G. Experimental simulation of contaminant deposition on a film cooled turbine vane pressure side with a trench[J]. Journal of Turbomachinery,2013,135(5): 051008.1-051008.11.
    [7] NEMDILI F,AZZI A,JUBRAN B A. Numerical investigation of the influence of a hole imperfection on film cooling effectiveness[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2011,21(1): 46-60.
    [8] EKKAD S V,HAN J C. Heat transfer distributions on a cylinder with simulated thermal barrier coating spallation[J]. Journal of Thermophysics & Heat Transfer,2015,13(1): 76-81.
    [9] BUNKER R S. Effect of partial coating blockage on film cooling effectiveness[R]. ASME Paper 2000-GT-0244, 2000.
    [10] SOMAWARDHANA R P, BOGARD D G. Effects of obstructions and surface roughness on film cooling effectiveness with and without a transverse trench[R]. ASME Paper GT2007-28003, 2007.
    [11] WANG J,CUI P,VUJANOVIC M,et al. Effects of surface deposition and droplet injection on film cooling[J]. Energy Conversion and Management,2016,125: 51-58. doi: 10.1016/j.enconman.2016.03.038
    [12] 郭云修,李广超,曾睿,等. 气膜孔堵塞对叶片吸力面气膜冷却的影响[J]. 动力工程学报,2021,41(1): 28-35. doi: 10.19805/j.cnki.jcspe.2021.01.005

    GUO Yunxiu,LI Guangchao,ZENG Rui,et al. Effect of hole blockage on the film cooling effectiveness of a blade on the suction side[J]. Journal of Chinese Society of Power Engineering,2021,41(1): 28-35. (in Chinese) doi: 10.19805/j.cnki.jcspe.2021.01.005
    [13] SUNDARAM N,THOLE K A. Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling[J]. Journal of Turbomachinery,2007,129(3): 599-607.
    [14] 宫声凯,邓亮,毕晓方,等. 陶瓷热障涂层的隔热效果研究[J]. 航空学报,2000,21(增刊1): 25-29. doi: 10.3321/j.issn:1000-6893.2000.Z1.006

    GONG Shengkai,DENG Liang,BI Xiaofang,et al. Thermal barrier effect of ceramic thermal barrier coatings[J]. Acta Aeronautica et Astronautica Sinica,2000,21(Suppl.1): 25-29. (in Chinese) doi: 10.3321/j.issn:1000-6893.2000.Z1.006
    [15] PADTURE N P,GELL M,JORDAN E H. Thermal barrier coatings for gas-turbine engine apptications[J]. Science,2002,296(5566): 280-284. doi: 10.1126/science.1068609
    [16] ZHU W,WANG J W,YANG L,et al. Modeling and simulation of the temperature and stress fields in a 3D turbine blade coated with thermal barrier coatings[J]. Surface & Coatings Technology,2017,315: 443-453.
    [17] LIU Z Y,ZHU W,YANG L,et al. Numerical prediction of thermal insulation performance and stress distribution of thermal barrier coatings coated on a turbine vane[J]. International Journal of Thermal Sciences,2020,158: 1-12.
    [18] HUANG X,PU J,WANG J H,et al. Sensitivity analysis of internal layout and coating thickness to overall cooling performances of laminated cooling configurations with surface thermal barrier coatings[J]. Applied Thermal Engineering,2020,181(1): 116020.1-116020.13.
    [19] DAVIDSON F T, DEES J E, BOGARD D G. An experimental study of thermal barrier coatings and film cooling on an internally cooled simulated turbine vane[R]. ASME Paper GT2011-46604, 2011.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  236
  • HTML浏览量:  71
  • PDF量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 网络出版日期:  2022-10-08

目录

    /

    返回文章
    返回