留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于颤振样本识别和颤振度分析的颤振边界预测方法

陈鸣峰 周丽

陈鸣峰, 周丽. 基于颤振样本识别和颤振度分析的颤振边界预测方法[J]. 航空动力学报, 2024, 39(12):20220311 doi: 10.13224/j.cnki.jasp.20220311
引用本文: 陈鸣峰, 周丽. 基于颤振样本识别和颤振度分析的颤振边界预测方法[J]. 航空动力学报, 2024, 39(12):20220311 doi: 10.13224/j.cnki.jasp.20220311
CHEN Mingfeng, ZHOU Li. Flutter boundary prediction method based on flutter-sample identification and flutter-degree analysis[J]. Journal of Aerospace Power, 2024, 39(12):20220311 doi: 10.13224/j.cnki.jasp.20220311
Citation: CHEN Mingfeng, ZHOU Li. Flutter boundary prediction method based on flutter-sample identification and flutter-degree analysis[J]. Journal of Aerospace Power, 2024, 39(12):20220311 doi: 10.13224/j.cnki.jasp.20220311

基于颤振样本识别和颤振度分析的颤振边界预测方法

doi: 10.13224/j.cnki.jasp.20220311
基金项目: 国家自然科学基金(52075243); 江苏省高校优势学科建设工程资助项目
详细信息
    作者简介:

    陈鸣峰(1998-),男,硕士生,主要从事飞机颤振边界预测研究。E-mail:cmf425@nuaa.edu.cn

    通讯作者:

    周丽(1963-),女,教授、博士生导师,博士,主要从事结构健康监测研究。E-mail:lzhou@nuaa.edu.cn

  • 中图分类号: V216.2+4

Flutter boundary prediction method based on flutter-sample identification and flutter-degree analysis

  • 摘要:

    提出一种基于机器学习的颤振边界预测方法,能够在风速到达亚临界状态前进行颤振速度的预测。从风洞响应信号中提取颤振信号特征,根据飞行状态的不同建立分类模型;接着分别在不同颤振样本下建立回归模型,用于颤振度分析。进行预测时,根据待测数据的分类表现,将颤振度分析的结果进行加权计算,得到当前风速对应的颤振度,再计算出颤振风速。在进行机器学习的算法选择时,使用朴素贝叶斯算法、支持向量机法、K近邻算法等机器学习算法进行分类模型的构建,用线性回归、支持向量机法、高斯过程回归等进行回归模型的构建。结果显示:K近邻算法在分类算法中表现最优,而高斯过程回归算法在回归算法中表现最优。通过试验数据的交叉验证,该方法可以通过颤振样本识别和颤振度分析,在离颤振边界较远时,较为准确地预测出颤振临界速度。

     

  • 图 1  基于颤振样本识别和颤振度分析的颤振临界速度预测流程图

    Figure 1.  Flow chart of flutter boundary prediction based on flutter-sample identification and flutter-degree analysis

    图 2  某型飞机机翼的低速风洞试验

    Figure 2.  Low speed wind tunnel test of an aircraft wing

    图 3  阶梯状风速和“平滑化”后风速

    Figure 3.  Stepped wind speed and “smoothed” wind speed

    图 4  多余数据剔除后风速对比图

    Figure 4.  Comparison diagram of wind speed after elimination of redundant data

    图 5  频谱幅值及其倒数与风速关系图

    Figure 5.  Relationship between spectrum amplitude or its reciprocal and wind speed

    图 6  颤振度与风速的关系图

    Figure 6.  Relationship between flutter-degree and wind speed

    表  1  各分类算法对于颤振样本识别情况的统计结果

    Table  1.   Statistical results of classification algorithm for flutter-sample identification

    各类算法 评价指标
    准确度/% AUC
    分类决策树 66.5 0.913
    朴素贝叶斯 38.0 0.739
    支持向量机法 72.0 0.975
    K近邻算法 80.1 0.961
    下载: 导出CSV

    表  2  各回归算法对于颤振度分析预测情况的统计结果

    Table  2.   Statistical results of prediction of each regression algorithm for flutter-degree analysis

    各回归算法 评价指标
    RMSE MAE R-squared
    线性回归 0.0596 0.0379 0.93
    回归决策树 0.0386 0.0253 0.97
    支持向量机 0.0502 0.0298 0.95
    高斯过程回归 0.0303 0.0202 0.98
    下载: 导出CSV

    表  3  第5组试验数据分类结果统计

    Table  3.   Statistics of classification results of the fifth group of test data

    颤振样本 相似度/% 颤振样本 相似度/%
    1 11.39 11 3.96
    2 0 12 6.44
    3 0 13 20.79
    4 0.49 14 0
    6 6.93 15 0
    7 38.61 16 0
    8 4.46 17 3.96
    9 0.99 18 0
    10 1.98 19 0
    下载: 导出CSV

    表  4  各最低相似阈值下的颤振预测误差统计

    Table  4.   Statistics of flutter prediction error under each lowest similarity threshold

    颤振度 颤振预测误差/%
    b=3 b=5 b=7 b=9 b=12 b=15
    0.4 −8.60 −8.60 −7.94 −9.23 −9.23 −9.23
    0.6 −1.73 −2.02 −0.83 −0.83 −3.84 −3.84
    0.8 −4.12 −4.97 −5.56 −7.39 −8.34 −8.34
    0.9 0.39 0.17 −0.87 −1.10 −1.25 −1.33
    下载: 导出CSV

    表  5  最小有效预测风速统计情况

    Table  5.   Statistics of minimum effective predicted wind speed

    数据组别 最小有效预测风速/(m/s) 颤振临界速度/(m/s)
    1 17.7 33.3
    2 27.0 38.6
    3 29.2 38.6
    4 28.3 38.7
    5 15.6 39
    6 20.0 36.4
    7 17.7 35.9
    8 11.7 35.8
    9 25.2 35.9
    10 18.1 37.6
    11 13.2 35.2
    12 11.1 35
    13 12.1 35.1
    14 26.6 36.8
    15 23.8 36.4
    16 26.2 37.4
    17 14.9 36.5
    18 22.4 37.2
    19 24.3 29.7
    下载: 导出CSV

    表  6  颤振预测误差统计情况

    Table  6.   Statistics of flutter prediction error

    组别 颤振预测误差/%
    D=0.4 D=0.5 D=0.6 D=0.7 D=0.8 D=0.9
    1 −5.37 −8.20 −5.88 −6.81
    2 −4.87 −7.77 −0.44
    3 −9.15 −10.94
    4 −5.51 −12.53
    5 −7.94 3.71 −0.83 −0.02 −5.56 −0.87
    6 −4.05 4.70 −0.48 −7.52
    7 −5.21 −6.60 −4.61 −5.32 −6.69
    8 −7.99 −5.64 −6.91 −6.40 1.99 −5.98
    9 −4.44 −5.64
    10 −6.35 −7.22 −9.36 −18.02
    11 −7.56 −8.24 −5.03 −6.41 −10.46 −8.26
    12 −10.78 4.62 −5.95 −0.35 −4.5 −10.61
    13 −8.12 −4.37 −5.4 −5.82 −7.14 −11.56
    14 −8.94 −9.80
    15 −6.95 −5.96 −3.36
    16 −11.20 −4.07
    17 −3.76 −6.35 −2.57 −6.09 −12.3
    18 −10.59 −12.45
    19 −3.88
    注:空白位置表示该颤振度对应的速度小于最小有效预测风速。
    下载: 导出CSV
  • [1] 李扬,周丽. 颤振边界预测的系统稳定性分析方法[J]. 航空动力学报,2018,33(4): 980-988. LI Yang,ZHOU Li. Flutter boundary prediction research depending on system stability analysis methods[J]. Journal of Aerospace Power,2018,33(4): 980-988. (in Chinese

    LI Yang, ZHOU Li. Flutter boundary prediction research depending on system stability analysis methods[J]. Journal of Aerospace Power, 2018, 33(4): 980-988. (in Chinese)
    [2] LIND R. Flight-test evaluation of flutter prediction methods[J]. Journal of Aircraft,2003,40(5): 964-970. doi: 10.2514/2.6881
    [3] 肖军,周新海,谷传纲,等. 二维叶栅气固耦合颤振分析[J]. 航空动力学报,2006,21(1): 106-111. XIAO Jun,ZHOU Xinhai,GU Chuangang,et al. Flutter analysis of 2-D cascades under gas-solid coupled conditions[J]. Journal of Aerospace Power,2006,21(1): 106-111. (in Chinese doi: 10.3969/j.issn.1000-8055.2006.01.020

    XIAO Jun, ZHOU Xinhai, GU Chuangang, et al. Flutter analysis of 2-D cascades under gas-solid coupled conditions[J]. Journal of Aerospace Power, 2006, 21(1): 106-111. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.01.020
    [4] 张伟伟,钟华寿,肖华,等. 颤振飞行试验的边界预测方法回顾与展望[J]. 航空学报,2015,36(5): 1367-1384. ZHANG Weiwei,ZHONG Huashou,XIAO Hua,et al. Review and prospect of flutter boundary prediction methods for flight flutter testing[J]. Acta Aeronautica et Astronautica Sinica,2015,36(5): 1367-1384. (in Chinese

    ZHANG Weiwei, ZHONG Huashou, XIAO Hua, et al. Review and prospect of flutter boundary prediction methods for flight flutter testing[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1367-1384. (in Chinese)
    [5] IOVNOVICH M,NAHOM T,PRESMAN M,et al. Assessment of advanced flutter flight-test techniques and flutter boundary prediction methods[J]. Journal of Aircraft,2018,55(5): 1877-1889. doi: 10.2514/1.C034716
    [6] ZIMMERMAN N H,WEISSENBURGER J T. Prediction of flutter onset speed based on flight testing at subcritical speeds[J]. Journal of Aircraft,1964,1(4): 190-202. doi: 10.2514/3.43581
    [7] 李扬,周丽,杨秉才. 基于自然激励技术的颤振边界预测[J]. 航空动力学报,2016,31(11): 2744-2749. LI Yang,ZHOU Li,YANG Bingcai. Flutter boundary prediction based on natural excitation technique[J]. Journal of Aerospace Power,2016,31(11): 2744-2749. (in Chinese

    LI Yang, ZHOU Li, YANG Bingcai. Flutter boundary prediction based on natural excitation technique[J]. Journal of Aerospace Power, 2016, 31(11): 2744-2749. (in Chinese)
    [8] 仲继泽,徐自力. 基于动网格降阶算法的机翼颤振边界预测[J]. 振动与冲击,2017,36(4): 185-191. ZHONG Jize,XU Zili. Wing flutter prediction using a reduced dynamic mesh method[J]. Journal of Vibration and Shock,2017,36(4): 185-191. (in Chinese

    ZHONG Jize, XU Zili. Wing flutter prediction using a reduced dynamic mesh method[J]. Journal of Vibration and Shock, 2017, 36(4): 185-191. (in Chinese)
    [9] 邓海均,熊波,罗新福,等. 连续式跨声速风洞短轴探管设计与试验[J]. 航空动力学报,2022,37(6): 1171-1180. DENG Haijun,XIONG Bo,LUO Xinfu,et al. Design and test of short centerline probe in continuous transonic wind tunnel[J]. Journal of Aerospace Power,2022,37(6): 1171-1180. (in Chinese

    DENG Haijun, XIONG Bo, LUO Xinfu, et al. Design and test of short centerline probe in continuous transonic wind tunnel[J]. Journal of Aerospace Power, 2022, 37(6): 1171-1180. (in Chinese)
    [10] 郑宇宁. 多源不确定性条件下气动弹性系统颤振可靠性分析方法[J]. 振动与冲击,2021,40(3): 54-62. ZHENG Yuning. Flutter reliability analysis method of aeroelastic system under multi-source uncertainty[J]. Journal of Vibration and Shock,2021,40(3): 54-62. (in Chinese

    ZHENG Yuning. Flutter reliability analysis method of aeroelastic system under multi-source uncertainty[J]. Journal of Vibration and Shock, 2021, 40(3): 54-62. (in Chinese)
    [11] MCNAMARA J J,FRIEDMANN P P. Flutter-boundary identification for time-domain computational aeroelasticity[J]. AIAA Journal,2007,45(7): 1546-1555. doi: 10.2514/1.26706
    [12] 夏存江,詹于游. 基于改进的SENet航空发动机振动预测[J]. 航空动力学报,2022,37(12): 2807-2817. XIA Cunjiang,ZHAN Yuyou. Vibration prediction of aeroengines based on enhanced SENet model[J]. Journal of Aerospace Power,2022,37(12): 2807-2817. (in Chinese

    XIA Cunjiang, ZHAN Yuyou. Vibration prediction of aeroengines based on enhanced SENet model[J]. Journal of Aerospace Power, 2022, 37(12): 2807-2817. (in Chinese)
    [13] LIAKOS K G,BUSATO P,MOSHOU D,et al. Machine learning in agriculture: a review[J]. Sensors,2018,18(8): 2674. doi: 10.3390/s18082674
    [14] JORDAN M I,MITCHELL T M. Machine learning: trends,perspectives,and prospects[J]. Science,2015,349(6245): 255-260. doi: 10.1126/science.aaa8415
    [15] 何清,李宁,罗文娟,等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能,2014,27(4): 327-336. HE Qing,LI Ning,LUO Wenjuan,et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence,2014,27(4): 327-336. (in Chinese doi: 10.3969/j.issn.1003-6059.2014.04.007

    HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336. (in Chinese) doi: 10.3969/j.issn.1003-6059.2014.04.007
    [16] KADEN M,LANGE M,NEBEL D,et al. Aspects in classification learning-review of recent developments in learning vector quantization[J]. Foundations of Computing and Decision Sciences,2014,39(2): 79-105. doi: 10.2478/fcds-2014-0006
    [17] 邱德红,陈传波. 融合无监督和监督学习策略生成的多分类决策树[J]. 小型微型计算机系统,2004,25(4): 555-559. QIU Dehong,CHEN Chuanbo. Construction of multi-classification decision tree combining unsupervised and supervised learning strategy[J]. Journal of Chinese Computer Systems,2004,25(4): 555-559. (in Chinese doi: 10.3969/j.issn.1000-1220.2004.04.018

    QIU Dehong, CHEN Chuanbo. Construction of multi-classification decision tree combining unsupervised and supervised learning strategy[J]. Journal of Chinese Computer Systems, 2004, 25(4): 555-559. (in Chinese) doi: 10.3969/j.issn.1000-1220.2004.04.018
    [18] 徐平峰,王树达,尚来旭,等. 基于自助法的高斯贝叶斯网结构学习[J]. 长春工业大学学报,2020,41(4): 313-321. XU Pingfeng,WANG Shuda,SHANG Laixu,et al. Structural learning of Gaussian Bayesian networks by bootstrap[J]. Journal of Changchun University of Technology,2020,41(4): 313-321. (in Chinese

    XU Pingfeng, WANG Shuda, SHANG Laixu, et al. Structural learning of Gaussian Bayesian networks by bootstrap[J]. Journal of Changchun University of Technology, 2020, 41(4): 313-321. (in Chinese)
    [19] 祁亨年. 支持向量机及其应用研究综述[J]. 计算机工程,2004,30(10): 6-9. QI Hengnian. Support vector machines and application research overview[J]. Computer Engineering,2004,30(10): 6-9. (in Chinese doi: 10.3969/j.issn.1000-3428.2004.10.003

    QI Hengnian. Support vector machines and application research overview[J]. Computer Engineering, 2004, 30(10): 6-9. (in Chinese) doi: 10.3969/j.issn.1000-3428.2004.10.003
    [20] 黄铭,孙林夫,任春华,等. 改进KNN的时间序列分析方法[J]. 计算机科学,2021,48(6): 71-78. HUANG Ming,SUN Linfu,REN Chunhua,et al. Improved KNN time series analysis method[J]. Computer Science,2021,48(6): 71-78. (in Chinese doi: 10.11896/jsjkx.200500044

    HUANG Ming, SUN Linfu, REN Chunhua, et al. Improved KNN time series analysis method[J]. Computer Science, 2021, 48(6): 71-78. (in Chinese) doi: 10.11896/jsjkx.200500044
    [21] HUANG Guangbin,ZHOU Hongming,DING Xiaojian,et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),2012,42(2): 513-529. doi: 10.1109/TSMCB.2011.2168604
    [22] 王惠文,孟洁. 多元线性回归的预测建模方法[J]. 北京航空航天大学学报,2007,33(4): 500-504. WANG Huiwen,MENG Jie. Predictive modeling on multivariate linear regression[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(4): 500-504. (in Chinese doi: 10.3969/j.issn.1001-5965.2007.04.028

    WANG Huiwen, MENG Jie. Predictive modeling on multivariate linear regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 500-504. (in Chinese) doi: 10.3969/j.issn.1001-5965.2007.04.028
    [23] KIM H J,FAY M P,YU Binbing,et al. Comparability of segmented line regression models[J]. Biometrics,2004,60(4): 1005-1014. doi: 10.1111/j.0006-341X.2004.00256.x
    [24] 何志昆,刘光斌,赵曦晶,等. 高斯过程回归方法综述[J]. 控制与决策,2013,28(8): 1121-1129,1137. HE Zhikun,LIU Guangbin,ZHAO Xijing,et al. Overview of Gaussian process regression[J]. Control and Decision,2013,28(8): 1121-1129,1137. (in Chinese

    HE Zhikun, LIU Guangbin, ZHAO Xijing, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129, 1137. (in Chinese)
    [25] SCHULZ E,SPEEKENBRINK M,KRAUSE A. A tutorial on Gaussian process regression: modelling,exploring,and exploiting functions[J]. Journal of Mathematical Psychology,2018,85: 1-16. doi: 10.1016/j.jmp.2018.03.001
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  130
  • HTML浏览量:  42
  • PDF量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 网络出版日期:  2024-08-01

目录

    /

    返回文章
    返回