留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋流燃烧室不同孔型发散冷却特性的对比

芦翔 贾玉良 吉雍彬 葛冰 臧述升

芦翔, 贾玉良, 吉雍彬, 等. 旋流燃烧室不同孔型发散冷却特性的对比[J]. 航空动力学报, 2024, 39(12):20220313 doi: 10.13224/j.cnki.jasp.20220313
引用本文: 芦翔, 贾玉良, 吉雍彬, 等. 旋流燃烧室不同孔型发散冷却特性的对比[J]. 航空动力学报, 2024, 39(12):20220313 doi: 10.13224/j.cnki.jasp.20220313
LU Xiang, JIA Yuliang, JI Yongbin, et al. Comparison of effusion cooling characteristics between different hole configurations in a swirl-stabilized combustor[J]. Journal of Aerospace Power, 2024, 39(12):20220313 doi: 10.13224/j.cnki.jasp.20220313
Citation: LU Xiang, JIA Yuliang, JI Yongbin, et al. Comparison of effusion cooling characteristics between different hole configurations in a swirl-stabilized combustor[J]. Journal of Aerospace Power, 2024, 39(12):20220313 doi: 10.13224/j.cnki.jasp.20220313

旋流燃烧室不同孔型发散冷却特性的对比

doi: 10.13224/j.cnki.jasp.20220313
基金项目: 航空发动机及燃气轮机重大专项:重型燃气轮机多组分气体低污染燃烧室先进数值方法与模型研究(Y2019-Ⅰ-0022-0021)
详细信息
    作者简介:

    芦翔(1995-),男,博士生,主要从事燃烧室的雾化与冷却研究

    通讯作者:

    葛冰(1977-),男,副研究员,博士,研究方向为航空发动机/燃气轮机低污染燃烧技术。E-mail:Gebing@sjtu.edu.cn

  • 中图分类号: V231.1

Comparison of effusion cooling characteristics between different hole configurations in a swirl-stabilized combustor

  • 摘要:

    针对旋流模型燃烧室开展了旋流冲击条件下不同发散冷却孔型(扇形孔和圆孔)传热特性的数值及试验研究。通过稳态液晶测温技术考察了孔型及吹风比对冷却性能的影响。基于稳态数值模拟,完成了不同孔型结构下冷却气流在壁面附近的流动对比分析。试验表明:扇形孔冷效分布特征与圆孔基本相同,但面积平均冷效高出40%左右。相比圆孔,扇形孔流动更易受旋流冲击的影响,导致冷效提高效果对吹风比和位置的改变较为敏感。数值结果表明:扇形孔在角回流区具有更好的气膜覆盖和更多的冷气流量,相比圆孔冷效提高最明显(冷效最高可提高80%左右);而在冲击区扇形孔冷气流量受到旋流的抑制更明显,冷效的改善不明显。

     

  • 图 1  旋流模型燃烧室

    Figure 1.  Swirl-stabilized model combustor

    图 2  冷却孔型及排布方式(单位:mm )

    Figure 2.  Hole structures and arrangements (unit:mm)

    图 3  热色液晶标定方法

    Figure 3.  Calibration method of TLC

    图 4  数值计算模型及网格

    Figure 4.  Simulation geometry and mesh

    图 5  数值模型验证

    Figure 5.  Verification of simulation model

    图 6  吹风比与孔型对局部冷效的影响

    Figure 6.  Influence of blowing ratio and hole structure on local cooling effectiveness

    图 7  圆孔与扇形孔冷效沿轴向变化趋势对比(M=3.6)

    Figure 7.  Comparison of spanwise average efficiency of cylindrical and fan-shaped holes (M=3.6)

    图 8  不同区域冷效提高系数对比

    Figure 8.  Comparison of improvement coefficient of cooling effectiveness at different areas

    图 9  吹风比对冷效提高系数的影响

    Figure 9.  Influence of blowing ratio on improvement coefficient of cooling effectiveness

    图 10  燃烧室主流空气流动-基于燃烧室中截面(X/D=0)

    Figure 10.  Mainstream flow of combustor at the plane (X/D=0)

    图 11  近壁面气膜流动对比-基于燃烧室中截面(X/D=0)

    Figure 11.  Comparison of near-wall coolant film flow at the plane (X/D=0)

    图 12  冷气流量分配对比

    Figure 12.  Comparison of coolant distribution

    表  1  试验工况

    Table  1.   Experiment and calculation conditions

    参数数值及范围
    主流流量/(g/s)180
    冷气流量/(g/s)5~25
    主流温度/K315
    冷气温度/K300
    吹风比1.2~6.0
    下载: 导出CSV
  • [1] THOLE K,GRITSCH M,SCHULZ A,et al. Flowfield measurements for film-cooling holes with expanded exits[J]. Journal of Turbomachinery,1998,120(2): 327-336. doi: 10.1115/1.2841410
    [2] WEI H,AI J L,ZU Y Q,et al. Heat transfer characteristics of fan-shaped hole effusion cooling for a constant hole exit width-Numerical simulation and experimental validation[J]. Applied Thermal Engineering,2019,160: 113978. doi: 10.1016/j.applthermaleng.2019.113978
    [3] JACKOWSKI T,SCHULZ A,BAUER H J,et al. Effusion cooled combustor liner tiles with modern cooling concepts: a comparative experimental study[R]. Seoul: American Society of Mechanical Engineers,2016.
    [4] 朱兴丹,张靖周,谭晓茗. 旋转对涡轮叶片异型孔气膜冷却的影响[J]. 推进技术,2016,37(9): 1713-1719. ZHU Xingdan,ZHANG Jingzhou,TAN Xiaoming. Effects of rotation on shaped-hole film cooling on a turbine blade[J]. Journal of Propulsion Technology,2016,37(9): 1713-1719. (in Chinese

    ZHU Xingdan, ZHANG Jingzhou, TAN Xiaoming. Effects of rotation on shaped-hole film cooling on a turbine blade[J]. Journal of Propulsion Technology, 2016, 37(9): 1713-1719. (in Chinese)
    [5] 朱惠人,许都纯,郭涛,等. 气膜孔形状对排孔下游换热的影响[J]. 航空动力学报,2001,16(4): 360-364. ZHU Huiren,XU Duchun,GUO Tao,et al. Effects of film cooling hole shape on heat transfer[J]. Journal of Aerospace Power,2001,16(4): 360-364. (in Chinese doi: 10.3969/j.issn.1000-8055.2001.04.013

    ZHU Huiren, XU Duchun, GUO Tao, et al. Effects of film cooling hole shape on heat transfer[J]. Journal of Aerospace Power, 2001, 16(4): 360-364. (in Chinese) doi: 10.3969/j.issn.1000-8055.2001.04.013
    [6] WURM B,SCHULZ A,BAUER H J,et al. Impact of swirl flow on the cooling performance of an effusion cooled combustor liner[J]. Journal of Engineering for Gas Turbines and Power,2012,134(12): 121503. doi: 10.1115/1.4007332
    [7] ANDREINI A,BECCHI R,FACCHINI B,et al. Adiabatic effectiveness and flow field measurements in a realistic effusion cooled lean burn combustor[J]. Journal of Engineering for Gas Turbines and Power,2016,138(3): 031506. doi: 10.1115/1.4031309
    [8] ANDREINI A,BECCHI R,FACCHINI B,et al. The effect of effusion holes inclination angle on the adiabatic film cooling effectiveness in a three-sector gas turbine combustor rig with a realistic swirling flow[J]. International Journal of Thermal Sciences,2017,121: 75-88. doi: 10.1016/j.ijthermalsci.2017.07.003
    [9] JI Yongbin,ZHANG Liang,JIN Ming,et al. Experimental study on overall cooling effectiveness of swirl-stabilized model combustor with effusion cooling[R]. Phoenix: American Society of Mechanical Engineers,2019.
    [10] GHORAB M G. Film cooling effectiveness and net heat flux reduction of advanced cooling schemes using thermochromic liquid crystal[J]. Applied Thermal Engineering,2011,31(1): 77-92. doi: 10.1016/j.applthermaleng.2010.08.020
    [11] HU Yaping,JI Honghu. Numerical study of the effect of blowing angle on cooling effectiveness of an effusion cooling[R]. Vienna: ASME,2004.
    [12] 赵一霖,谭晓茗,张靖周,等. 带起始气膜的大弯管发散冷却特性的数值研究[J]. 推进技术,2020,41(12): 2739-2747. ZHAO Yilin,TAN Xiaoming,ZHANG Jingzhou,et al. Numerical investigation on effusion cooling characteristics of concave wall combined with initial film cooling[J]. Journal of Propulsion Technology,2020,41(12): 2739-2747. (in Chinese

    ZHAO Yilin, TAN Xiaoming, ZHANG Jingzhou, et al. Numerical investigation on effusion cooling characteristics of concave wall combined with initial film cooling[J]. Journal of Propulsion Technology, 2020, 41(12): 2739-2747. (in Chinese)
    [13] BRIONES A M,STOUFFER S,VOGIATZIS K,et al. Effects of liner cooling momentum on combustor performance: AIAA 2017-0781[R]. Reston,Virginia: AIAA,2017.
    [14] ANDREINI A,FACCHINI B,PICCHI A,et al. Experimental and theoretical investigation of thermal effectiveness in multi-perforated plates for combustor liner effusion cooling[J]. Journal of Turbomachinery,2014,136(9): 091003. doi: 10.1115/1.4026846
    [15] KAKADE V U,THORPE S J,GERENDÁS M. Effusion-cooling performance at gas turbine combustor representative flow conditions[C]//ASME Turbo Expo: Turbine Technical Conference & Exposition,Copenhagen: ASME,2012: 857-869.
    [16] SCRITTORE J J,THOLE K A,BURD S W. Investigation of velocity profiles for effusion cooling of a combustor liner[J]. Journal of Turbomachinery,2007,129(3): 518-526. doi: 10.1115/1.2720492
    [17] MAHESH K. The interaction of jets with cross-flow[J]. Annual Review of Fluid Mechanics,2013,45: 379-407. doi: 10.1146/annurev-fluid-120710-101115
    [18] RUEDEL U,TRBOJEVIC B,BENZ U,et al. Development of an annular combustor chamber[R]. San Antonio: American Society of Mechanical Engineers,2013.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  93
  • HTML浏览量:  53
  • PDF量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 网络出版日期:  2024-08-01

目录

    /

    返回文章
    返回