留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压气机中间级转子叶片强迫振动响应快速分析

韩乐 王延荣 魏大盛 杨唯超 李迪 邹正平

韩乐, 王延荣, 魏大盛, 等. 压气机中间级转子叶片强迫振动响应快速分析[J]. 航空动力学报, 2022, 37(11):2636-2646 doi: 10.13224/j.cnki.jasp.20220314
引用本文: 韩乐, 王延荣, 魏大盛, 等. 压气机中间级转子叶片强迫振动响应快速分析[J]. 航空动力学报, 2022, 37(11):2636-2646 doi: 10.13224/j.cnki.jasp.20220314
HAN Le, WANG Yanrong, WEI Dasheng, et al. Fast analysis of forced vibration response on intermediate stage compressor rotor blade[J]. Journal of Aerospace Power, 2022, 37(11):2636-2646 doi: 10.13224/j.cnki.jasp.20220314
Citation: HAN Le, WANG Yanrong, WEI Dasheng, et al. Fast analysis of forced vibration response on intermediate stage compressor rotor blade[J]. Journal of Aerospace Power, 2022, 37(11):2636-2646 doi: 10.13224/j.cnki.jasp.20220314

压气机中间级转子叶片强迫振动响应快速分析

doi: 10.13224/j.cnki.jasp.20220314
基金项目: 国家科技重大专项(2017-Ⅳ-0002-0039,J2019-Ⅳ-0012-0080)
详细信息
    作者简介:

    韩乐(1989-),男,助理研究员,博士,从事叶轮机械流致振动、结构强度和流动稳定性研究。E-mail: hanle@buaa.edu.cn

    通讯作者:

    魏大盛(1978-),男,教授、博士生导师,博士,从事航空发动机结构强度、振动与疲劳寿命研究。E-mail:dasheng.w@163.com

  • 中图分类号: V231.1

Fast analysis of forced vibration response on intermediate stage compressor rotor blade

  • 摘要:

    以多级压气机第二级转子叶片为例,对其共振时的振动特征进行了快速分析。一方面通过进口边界条件修正对压气机模型进行减缩,并结合谐波方法提高了非定常气动力计算效率,另一方面利用系统在模态空间的频响关系和扫频技术进一步提高了求解效率,特别是当工程上亟需开展非定常气动力作用下的强迫振动响应分析时,可高效评估共振时叶片振动特征。结果表明:第二级转子叶片主要受上游静子激励,下游静子的势扰动影响有限,在共振转速附近易激起第15阶模态共振,叶片尖区有较高的振动应力,经瞬态响应分析,在给定的阻尼和工况下,所考查位置和方向的振动应力约71 MPa,利用扫频等方式评估共振时非定常气动力引起的转子叶片振动应力约为92 MPa。所形成的分析方法与流程有一定的普适性。

     

  • 图 1  强迫振动响应解耦法分析流程

    Figure 1.  Analysis process of forced response by using the weak decoupling method

    图 2  数值模型计算域

    Figure 2.  Computing domain of the numerical model

    图 3  非线性谐波法与时间推进法结果对比

    Figure 3.  Comparison between nonlinear harmonic method and time marching method[17]

    图 4  R2的结构网格、监测点以及材料参数

    Figure 4.  Solid Grids, monitors and material parameters of R2

    图 5  压气机特性图

    Figure 5.  Performance of the compressor

    图 6  简化模型与原模型不同叶高的压力相似度

    Figure 6.  Pressure similarity of different blade spans between the simplified and the original models

    图 7  99%叶高压力分布

    Figure 7.  Distribution of pressure at 99% blade span

    图 8  99%叶高Ma分布

    Figure 8.  Distribution of Ma at 99% blade span

    图 9  叶片表面非定常压力各阶谐波分布

    Figure 9.  Distribution of pressure harmonics on the blade surface

    图 10  90%叶高不同弦向位置压力谱

    Figure 10.  Pressure spectrum of 90% blade span at different chord lengths

    图 11  第二级转子叶片Campbell图

    Figure 11.  Campbell diagram of R2

    图 12  R2叶片模态结果

    Figure 12.  Modal analysis results of R2

    图 13  强迫振动响应收敛情况

    Figure 13.  Convergence of forced response

    图 14  各监测点振动应力

    Figure 14.  Vibration stresses at monitors

    图 15  共振点附近振动应力分布

    Figure 15.  Distribution of vibration stresses near the resonance point

    图 16  共振点附近监测点1585的振动应力

    Figure 16.  Vibration stress of Monitor 1585 near the resonance point

    图 17  共振点振动应力与误差分布

    Figure 17.  Vibration stress and error distribution at the resonance point

    表  1  S1、R2和S2无量纲设计参数

    Table  1.   Normalized design parameters of S1, R2 and S2

    参数S1R2S2
    叶片数463762
    叶尖前缘半径1.01410.982
    叶尖尾缘半径1.0040.9860.971
    叶根前缘半径0.6280.6530.7
    叶根尾缘半径0.6500.6970.718
    叶尖弦长C0.1910.2640.157
    叶根弦长0.1230.2240.101
    叶尖间隙00.28% C0
    下载: 导出CSV

    表  2  不同转速下气动激励与100%转速下的偏差

    Table  2.   Deviation of aerodynamic excitation between different rotating speeds and 100% rotating speed

    归一化转速模态力/N误差/%
    0.9532.23−1.6
    0.9831.24−4.5
    1.032.740
    1.0234.585.6
    1.0530.86−5.7
    下载: 导出CSV

    表  3  转子叶片表面监测点

    Table  3.   Monitors on blade surface of R2

    模态阶次最大主应力监测点编号主应力方向
    nxnynz
    1S113260.97−0.17−0.16
    2S18740.960.15−0.22
    3S113751.00−0.02−0.00
    15S11585−0.160.930.33
    16S115850.060.910.41
    下载: 导出CSV

    表  4  第二级转子叶片100%转速各阶模态频率和阻尼比

    Table  4.   Modal frequencies and damping ratios of R2 at 100%rotating speed

    模态阶次频率/Hzζi /%
    1709.460.030
    21701.20.030
    32116.50.033
    15110130.138
    16118170.148
    下载: 导出CSV

    表  5  不同方法的计算耗时

    Table  5.   Calculation time of different methods

    方法归一化时间
    共振模态频响关系分析1
    扫频方法10
    瞬态分析103~104
    下载: 导出CSV
  • [1] 韩乐,王延荣. 转子叶片气弹稳定性与强迫响应分析[J]. 航空发动机,2021,47(4): 82-90.

    HAN Le,WANG Yanrong. Analysis of aeroelastic stability and forced response of rotor blades[J]. Aeroengine,2021,47(4): 82-90. (in Chinese)
    [2] HAN Le,WEI Dasheng,WANG Yanrong,et al. Analysis method of nonsynchronous vibration and influence of tip clearance flow instabilities on nonsynchronous vibration in an axial transonic compressor rotor[J]. Journal of Turbomachinery,2021,143(11): 111014.1-111014.15.
    [3] KIELB R E, CHIANG H D. Recent advancements in turbomachinery forced response analyses[R]. AIAA-92-0012, 1992.
    [4] VAHDATI M,SAYMA A I,IMREGUN M. An integrated nonlinear approach for turbomachinery forced response prediction: Part Ⅰ formulation[J]. Journal of Fluids and Structures,2000,14(1): 87-101. doi: 10.1006/jfls.1999.0253
    [5] VAHDATI M,SAYMA A I,IMREGUN M. An Integrated nonlinear approach for turbomachinery forced response prediction: Part Ⅱ case studies[J]. Journal of Fluids and Structures,2000,14(1): 103-125. doi: 10.1006/jfls.1999.0254
    [6] 徐可宁. 叶轮机叶盘结构气动弹性算法研究及程序实现[D]. 北京: 北京航空航天大学, 2011.

    XU Kening. On the algorithm of aeroelasticity and the program implementation of bladed disk assemblies in turbomachines[D]. Beijing: Beihang University, 2011. (in Chinese)
    [7] ESPINAL D,IM H S,ZHA G C. Full-annulus simulation of nonsynchronous blade vibration excitation of an axial compressor[J]. Journal of Turbomachinery,2018,140(3): 031008.1-031008.12.
    [8] HE L,DENTON J D. Three-dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blades[J]. Journal of Turbomachinery,1994,116(3): 469-476. doi: 10.1115/1.2929436
    [9] HALL K C,LORENCE C B. Calculation of three-dimensional unsteady flows in turbomachinery using the linearized harmonic euler equations[J]. Journal of Turbomachinery,1993,115(4): 800-809. doi: 10.1115/1.2929318
    [10] NING W, HE L. Computation of unsteady flows around oscillating blades using linear and nonlinear harmonic euler methods[R]. ASME Paper 97-GT-229, 1997.
    [11] HE L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery,1990,112(4): 714-722. doi: 10.1115/1.2927714
    [12] 张小博,王延荣,黄钟山,等. 转静干涉下转子叶片的非定常压力频谱[J]. 航空动力学报,2016,31(7): 1695-1703. doi: 10.13224/j.cnki.jasp.2016.07.019

    ZHANG Xiaobo,WANG Yanrong,HUANG Zhongshan,et al. Frequency spectrum of unsteady pressure on rotor blade with rotor-stator interaction[J]. Journal of Aerospace Power,2016,31(7): 1695-1703. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.07.019
    [13] 王翔鹏, 王延荣, 田爱梅. 转、静子轴向间距对转子叶片振动应力的影响[J]. 航空动力学报, 2016, 31(6): 1427-1434.

    WANG Xiangpeng, WANG Yanrong, TIAN Aimei. Effect of axial spacing between rotor-stator on vibration stress of blade[J]. Journal of Aerospace Power, 2016, 31(6): 1427-1434. (in Chinese)
    [14] 李雪峰. 轴流跨音风扇/压气机转静非定常气动力的数值研究[D]. 南京: 南京航空航天大学, 2019.

    LI Xuefeng. Numerical study on unsteady aerodynamic of axial flow transonic fan/compressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [15] HALL K C,THOMAS J P,Clark W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal,2002,40(5): 879-886. doi: 10.2514/2.1754
    [16] 张翔,黄秀全,张恒铭,等. 基于谐波平衡法的跨声速风扇颤振特性数值模拟[J]. 机械强度,2017,39(3): 493-499.

    ZHANG Xiang,HUANG Xiuquan,ZHANG Hengming,et al. Numerical simulation of flutter characteristics in transonic fan based on harmonic balance method[J]. Journal of Mechanical Strength,2017,39(3): 493-499. (in Chinese)
    [17] 杨唯超. 压气机转子叶片颤振及其影响因素分析[D]. 北京: 北京航空航天大学, 2019.

    YANG Weichao. Investigation on flutter of compressor rotor blade and its influencing factors[D]. Beijing: Beihang University, 2019. (in Chinese)
    [18] 王延荣,黄钟山,付志忠,等. 基于热态叶型的小轮毂比弯掠叶片结构保形设计与优化[J]. 航空动力学报,2015,30(10): 2305-2311.

    WANG Yanrong,HUANG Zhongshan,FU Zhizhong,et al. Structural design and optimization for the deformation approaching to hot profile of a swept fan blade with smaller hub-to-tip ratio[J]. Journal of Aerospace Power,2015,30(10): 2305-2311. (in Chinese)
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  108
  • HTML浏览量:  23
  • PDF量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 网络出版日期:  2022-10-10

目录

    /

    返回文章
    返回