留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑变负载效应的油电混合系统能量管理研究

赵洋 潘天宇 郑孟宗 李秋实

赵洋, 潘天宇, 郑孟宗, 等. 考虑变负载效应的油电混合系统能量管理研究[J]. 航空动力学报, 2024, 39(X):20220321 doi: 10.13224/j.cnki.jasp.20220321
引用本文: 赵洋, 潘天宇, 郑孟宗, 等. 考虑变负载效应的油电混合系统能量管理研究[J]. 航空动力学报, 2024, 39(X):20220321 doi: 10.13224/j.cnki.jasp.20220321
ZHAO Yang, PAN Tianyu, ZHENG Mengzong, et al. Research on energy management of oil-electric hybrid system considering variable load effect[J]. Journal of Aerospace Power, 2024, 39(X):20220321 doi: 10.13224/j.cnki.jasp.20220321
Citation: ZHAO Yang, PAN Tianyu, ZHENG Mengzong, et al. Research on energy management of oil-electric hybrid system considering variable load effect[J]. Journal of Aerospace Power, 2024, 39(X):20220321 doi: 10.13224/j.cnki.jasp.20220321

考虑变负载效应的油电混合系统能量管理研究

doi: 10.13224/j.cnki.jasp.20220321
基金项目: 国家自然科学基金(51976005,52006002); 重点实验室基金项目(2022-JCJQ-LB-062-0101)
详细信息
    作者简介:

    赵洋(1997-),男,硕士生,研究领域为航空混合动力系统能量管理

    通讯作者:

    郑孟宗(1989-),男,助理研究员,博士,研究领域为仿生流体力学、混合动力系统。E-mail:zhengmengzong@buaa.edu.cn

  • 中图分类号: V279

Research on energy management of oil-electric hybrid system considering variable load effect

  • 摘要:

    以串联式结构作为航用油电混合系统能量管理方法研究的对象,针对发动机不同的负载匹配形式对能量管理进行研究。基于MATLAB/SIMULINK软件搭建一套研究能量管理方法的仿真平台,其中动力部件性能由实验获得,分别搭建了以PSO算法为基础的全局优化策略以及基于ECMS的瞬时优化策略,并应用于仿真平台。计算结果表明:考虑发动机变负载的匹配形式后,不同的能量管理方法下的耗油量相比于不变负载均有所降低,在全局优化策略下降低了6.27%;在瞬时优化策略下降低了7.4%。

     

  • 图 1  串联式结构系统运行示意图

    Figure 1.  Schematic of serial structure system operation

    图 2  能量管理方法模型

    Figure 2.  Model of energy management

    图 3  发动机万有特性

    Figure 3.  Engine universal characteristic

    图 4  电动机效率MAP图

    Figure 4.  Motor efficiency MAP

    图 5  飞行任务的功率需求

    Figure 5.  Power requirement of flight mission

    图 6  PSO流程图

    Figure 6.  PSO flow chart

    图 7  瞬时优化修正前的结果

    Figure 7.  Results of instantaneous optimization before correction

    图 8  瞬时优化修正后电池电量随时间的变化

    Figure 8.  Change of state of charge with time after instantaneous optimization correction

    图 9  变负载时全局优化结果

    Figure 9.  Global optimization results under variable load

    图 10  不变负载时全局优化结果

    Figure 10.  Global optimization results under constant load

    图 11  变负载时瞬时优化结果

    Figure 11.  Instantaneous optimization results under variable load

    图 12  不变负载时瞬时优化结果

    Figure 12.  Instantaneous optimization results under constant load

    表  1  两款发动机参数对比

    Table  1.   Comparison of parameters of two engines

    发动机型号 功率/kW 质量/kg 转速/(r/min)
    Rotax912ULS 73.5 67.7
    Rotax582UL 49 29.1 6800
    下载: 导出CSV

    表  2  PSO算法中各参数取值

    Table  2.   PSO parameter values

    D N M $ {c_1} $ $ {c_2} $ $ {w_{\max }} $ $ {w_{\min }} $
    3000 50 100 1.5 2.5 0.9 0.4
    下载: 导出CSV
  • [1] MOORE M D,BUSAN R C,FREDERICKS W J. Benefits of hybrid-electric propulsion to achieve 4x in cruise efficiency for a VTOL aircraft: NF1676L-16092[P]. 2014-03-07.
    [2] TING C C,TSAI D Y,HSIAO C C. Developing a mechanical roadway system for waste energy capture of vehicles and electric generation[J]. Applied Energy,2012,92: 1-8. doi: 10.1016/j.apenergy.2011.10.006
    [3] 黄波. 无人直升机混合动力驱动技术研究[D]. 成都: 电子科技大学,2018. HUANG Bo. Research on hybrid power driving technology of unmanned helicopter[D]. Chengdu: University of Electronic Science and Technology of China,2018. (in Chinese

    HUANG Bo. Research on hybrid power driving technology of unmanned helicopter[D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese)
    [4] 刘文弢. 多动力源固定翼无人飞行器的动力匹配与控制策略研究[D]. 长春: 吉林大学,2017. LIU Wentao. Research on dynamic match and control strategy of fixed wing unmanned aerial vehicle with multiple power sources[D]. Changchun: Jilin University,2017. (in Chinese

    LIU Wentao. Research on dynamic match and control strategy of fixed wing unmanned aerial vehicle with multiple power sources[D]. Changchun: Jilin University, 2017. (in Chinese)
    [5] 韩奎超. 插电式气电混合动力城市客车动力匹配及能量管理策略研究[D]. 济南: 山东大学,2017. HAN Kuichao. Study on power matching and energy management strategy for a plug-in hybrid urban bus[D]. Jinan: Shandong University,2017. (in Chinese

    HAN Kuichao. Study on power matching and energy management strategy for a plug-in hybrid urban bus[D]. Jinan: Shandong University, 2017. (in Chinese)
    [6] HARMON F G,FRANK A A,JOSHI S S. Application of a CMAC neural network to the control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle[C]//Proceedings of 2005 IEEE International Joint Conference on Neural Networks. Piscataway,US: IEEE,2005: 355-360.
    [7] HARMON F G,FRANK A A,CHATTOT J J. Conceptual design and simulation of a small hybrid-electric unmanned aerial vehicle[J]. Journal of Aircraft,2006,43(5): 1490-1498. doi: 10.2514/1.15816
    [8] DONATEO T,FICARELLA A,SPEDICATO L. Applying dynamic programming algorithms to the energy management of hybrid electric aircraft[C]//ASME Turbo Expo 2018 Turbomachinery Technical Conference and Exposition. Oslo,Norway: American Society of Mechanical Engineers,2018: 432-440.
    [9] GEISS I ,NOTTER S ,STROHMAYER A ,et al. Optimized operation strategies for serial hybrid-electric aircraft[C]//Aviation Technology,Integration,and Operations Conference. Atlanta,US: American Institute of Aeronautics and Astronautics,2018: 101-113.
    [10] 朱庆林. 基于瞬时优化的混合动力汽车控制策略研究[D]. 长春: 吉林大学,2009. ZHU Qinglin. Study on the control strategy of hybrid electric vehicle based on instantaneous optimization[D]. Changchun: Jilin University,2009. (in Chinese

    ZHU Qinglin. Study on the control strategy of hybrid electric vehicle based on instantaneous optimization[D]. Changchun: Jilin University, 2009. (in Chinese)
    [11] 王春凯. 基于遗传算法的混合动力公交车能量管理策略研究[D]. 济南: 山东大学,2020. WANG Chunkai. Research on energy management strategy of hybrid electric bus based on genetic algorithm[D]. Jinan: Shandong University,2020. (in Chinese

    WANG Chunkai. Research on energy management strategy of hybrid electric bus based on genetic algorithm[D]. Jinan: Shandong University, 2020. (in Chinese)
    [12] 张树彬. 插电式混合动力汽车自适应等效油耗能量管理策略研究[D]. 长春: 吉林大学,2017. ZHANG Shubin. Study on adaptive equivalent consumption energy management strategy for plug-in hybrid electric vehicle[D]. Changchun: Jilin University,2017. (in Chinese

    ZHANG Shubin. Study on adaptive equivalent consumption energy management strategy for plug-in hybrid electric vehicle[D]. Changchun: Jilin University, 2017. (in Chinese)
    [13] 夏飞. 基于MATLAB/SIMULINK的航空发动机建模与仿真研究[D]. 南京: 南京航空航天大学,2007. XIA Fei. Modeling and simulation of aeroengines based on MATLAB[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2007. (in Chinese

    XIA Fei. Modeling and simulation of aeroengines based on MATLAB[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)
    [14] 朱闪闪. 基于MATLAB/Simulink的航空发动机仿真建模[J]. 机械工程与自动化,2019(2): 48-50,53. ZHU Shanshan. Aeroengine modeling and simulation based on MATLAB/simulink[J]. Mechanical Engineering & Automation,2019(2): 48-50,53. (in Chinese doi: 10.3969/j.issn.1672-6413.2019.02.019

    ZHU Shanshan. Aeroengine modeling and simulation based on MATLAB/simulink[J]. Mechanical Engineering & Automation, 2019(2): 48-50, 53. (in Chinese) doi: 10.3969/j.issn.1672-6413.2019.02.019
    [15] 张书刚,郭迎清,陆军. 基于GasTurb/MATLAB的航空发动机部件级模型研究[J]. 航空动力学报,2012,27(12): 2850-2856. ZHANG Shugang,GUO Yingqing,LU Jun. Research on aircraft engine component-level models based on GasTurb/MATLAB[J]. Journal of Aerospace Power,2012,27(12): 2850-2856.

    ZHANG Shugang, GUO Yingqing, LU Jun. Research on aircraft engine component-level models based on GasTurb/MATLAB[J]. Journal of Aerospace Power, 2012, 27(12): 2850-2856.
    [16] 刘浩,韩晶. MATLAB R2018a完全自学一本通[M]. 北京: 电子工业出版社,2019. LIU Hao,HAN Jing. MATLAB R2018a is a completely self-taught all-in-one book[M]. Beijing: Publishing House of Electronics Industry,2019. (in Chinese

    LIU Hao, HAN Jing. MATLAB R2018a is a completely self-taught all-in-one book[M]. Beijing: Publishing House of Electronics Industry, 2019. (in Chinese)
    [17] 吴永红,曾志高,邓彬. 基于惯性权重和学习因子动态调整的粒子群算法[J]. 湖南工业大学学报,2021,35(1): 91-96. WU Yonghong,ZENG Zhigao,DENG Bin. Particle swarm optimization algorithm based on dynamic adjustment of inertial weight and learning factors[J]. Journal of Hunan University of Technology,2021,35(1): 91-96. (in Chinese

    WU Yonghong, ZENG Zhigao, DENG Bin. Particle swarm optimization algorithm based on dynamic adjustment of inertial weight and learning factors[J]. Journal of Hunan University of Technology, 2021, 35(1): 91-96. (in Chinese)
    [18] 徐生兵. 基于动态调整惯性权重下改进学习因子的粒子群算法[J]. 信息安全与技术,2014,5(4): 26-28. Xu Shengbing. A new modified acceleration coefficient in PSO base on dynamic adjustment of inertia weights[J]. Information Security and Technology,2014,5(4): 26-28.

    Xu Shengbing. A new modified acceleration coefficient in PSO base on dynamic adjustment of inertia weights[J]. Information Security and Technology, 2014, 5(4): 26-28.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  12
  • HTML浏览量:  3
  • PDF量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回