留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮盘榫槽激光冲击强化数值模拟与试验验证

肖值兴 毛建兴 田腾跃 汪文君 胡殿印 王荣桥

肖值兴, 毛建兴, 田腾跃, 等. 涡轮盘榫槽激光冲击强化数值模拟与试验验证[J]. 航空动力学报, 2022, 37(11):2448-2454 doi: 10.13224/j.cnki.jasp.20220324
引用本文: 肖值兴, 毛建兴, 田腾跃, 等. 涡轮盘榫槽激光冲击强化数值模拟与试验验证[J]. 航空动力学报, 2022, 37(11):2448-2454 doi: 10.13224/j.cnki.jasp.20220324
XIAO Zhixing, MAO Jianxing, TIAN Tengyue, et al. Numerical simulation and experimental verification on laser shock peening for turbine mortise[J]. Journal of Aerospace Power, 2022, 37(11):2448-2454 doi: 10.13224/j.cnki.jasp.20220324
Citation: XIAO Zhixing, MAO Jianxing, TIAN Tengyue, et al. Numerical simulation and experimental verification on laser shock peening for turbine mortise[J]. Journal of Aerospace Power, 2022, 37(11):2448-2454 doi: 10.13224/j.cnki.jasp.20220324

涡轮盘榫槽激光冲击强化数值模拟与试验验证

doi: 10.13224/j.cnki.jasp.20220324
基金项目: 国家自然科学基金(51875020, 52022007); 国家科技重大专项(J2019-Ⅳ-0009-0077)
详细信息
    作者简介:

    肖值兴(1997-),男,硕士生,主要从事金属疲劳及表面强化研究

    通讯作者:

    胡殿印(1980-),女,教授、博士生导师,博士,主要从事航空发动机结构强度与可靠性研究。E-mail:hdy@buaa.edu.cn

  • 中图分类号: V261.8

Numerical simulation and experimental verification on laser shock peening for turbine mortise

  • 摘要:

    提出了基于离散化思想的曲面结构激光冲击强化数值模拟方法,通过空间几何关系和能量守恒原理实现受冲击区域、压力的精准定义,可实现任意曲面、任意角度的激光冲击强化数值模拟,并依据网格无关性要求确定了靶材网格尺寸。利用该方法,探究了激光冲击强化后涡轮盘榫槽结构特征部位的残余应力分布规律,与试验结果相比预测误差在20%以内。研究表明:激光冲击强化后涡轮盘榫槽部位引入一定深度范围内的残余压应力,但因曲面结构特征导致的工艺可达性影响,残余应力数值低于相同工艺水平下的平面结构,且在不同方向上存在差异性。

     

  • 图 1  榫槽激光冲击强化示意图

    Figure 1.  Schematic diagram of mortise laser shock peening

    图 2  激光冲击压力时间曲线

    Figure 2.  Laser shock pressure time curve

    图 3  激光冲击区域判断

    Figure 3.  Laser shock area judgment

    图 4  激光冲击强化模型

    Figure 4.  Laser shock peening model

    图 5  不同网格尺寸下的残余应力

    Figure 5.  Residual stress under different grid sizes

    图 6  曲面激光冲击强化网格收敛曲线

    Figure 6.  Mesh convergence curve of laser shock peening on curved surface

    图 7  半榫槽有限元模型及网格划分

    Figure 7.  Finite element model and mesh generation of half mortise

    图 8  榫槽激光冲击强化残余应力场

    Figure 8.  Mortise laser shock peening residual stress field

    图 9  榫槽激光冲击强化模拟及试验结果

    Figure 9.  Simulation and experimental results of mortise laser shock peening

    表  1  GH4720Li材料参数[17]

    Table  1.   Material parameters of GH4720Li[17]

    E/GPavA/MPaB/MPaCn
    2190.3111421 9470.0260.882
    下载: 导出CSV

    表  2  不同结构表面残余应力

    Table  2.   Surface residual stress of different structures

    $\varphi$残余应力/MPa
    平面上齿面下齿面
    −678.51−668.89−413.42
    90°−677.93−633.42−338.03
    下载: 导出CSV
  • [1] 江涛. 发动机叶片榫槽爬波原位检测系统研制[D]. 南京: 南京航空航天大学, 2012.

    JIANG Tao. Engine blade groove creeping wave detection system developed in situ[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [2] 孙希泰. 材料表面强化技术[M]. 北京: 化学工业出版社材料科学与工程出版中心, 2005.
    [3] 段志勇. 激光冲击波及激光冲击处理技术的研究[D]. 合肥: 中国科学技术大学, 2000.

    DUAN Zhiyong. Study on laser shock wave and laser shock processing technology[D]. Hefei: University of Science and Technology of China, 2000. (in Chinese)
    [4] LI Songxia,QIAO Hongchao,ZHAO Jibin,et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering,2017,44(6): 569-576.
    [5] MONTROSS C S,WEI T,LIN Y,et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue,2002,24(10): 1021-1036. doi: 10.1016/S0142-1123(02)00022-1
    [6] OCANA J L,MORALES M,MOLPECERS C,et al. Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments[J]. Applied Surface Science,2004,238(1/2/3/4): 242-248. doi: 10.1016/j.apsusc.2004.05.232
    [7] HU Yongxiang,YAO Zhenqiang,HU Jun. 3-D FEM simulation of laser shock processing[J]. Surface & Coatings Technology,2006,201(3/4): 1426-1435.
    [8] 张永康,高立. 钛合金板料激光冲击变形的数值模拟和实验[J]. 中国机械工程,2006,17(17): 1813-1817. doi: 10.3321/j.issn:1004-132X.2006.17.013

    ZHANG Yongkang,GAO Li. Numerical simulation and experimental study on the deformation of TA2 sheet metal by laser shock[J]. China Mechanical Engineering,2006,17(17): 1813-1817. (in Chinese) doi: 10.3321/j.issn:1004-132X.2006.17.013
    [9] 胡永祥. 激光冲击处理工艺过程数值建模与冲击效应研究[D]. 上海: 上海交通大学, 2008.

    HU Yongxiang. Research on the numerical simulation and impact effects of laser shock processing[D]. Shanghai: Shanghai Jiao Tong University, 2008. (in Chinese)
    [10] GILL A S,TELANG A,VASUDEVAN V K. Characteristics of surface layers formed on inconel 718 by laser shock peening with and without a protective coating[J]. Journal of Materials Processing Tech,2015,225: 463-472. doi: 10.1016/j.jmatprotec.2015.06.026
    [11] 汪璐. 激光冲击强化对GH4720Li力学性能的影响及热稳定性研究[D]. 广州: 广东工业大学, 2021.

    WANG Lu. Study on effect of laser shock processing on mechanical properties and thermal stability of GH4720Li[D] Guangzhou: Guangdong University of Technology, 2021. (in Chinese)
    [12] 朱然. 平顶光束多点激光冲击薄壁件的强化与变形研究[D]. 南京: 东南大学, 2019.

    ZHU Ran. Study on strengthening and deformation of thin-walled components under flattened beam multiple laser shock processing[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [13] YANG Chunhui,HODGSON P D,LIU Qianchu,et al. Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J]. Journal of Materials Processing Technology,2008,201(1): 303-309.
    [14]
    [15] 葛良辰,曹宇鹏,花国然,等. 表面曲率对激光冲击曲面材料表面残余应力场分布的影响[J]. 表面技术,2020,49(4): 284-291.

    GE Liangchen,CAO Yupeng,HUA Guoran,et al. The effect of surface curvature on surface residual stress field distribution of laser shock materials[J]. Surface Technology,2020,49(4): 284-291. (in Chinese)
    [16] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[R]. Hague, Netherlands:Proceedings of the Seventh International Symposium on Ballistics, 1983.
    [17] HU Dianyin,TIAN Tengyue,WANG Xin,et al. Surface hardening analysis for shot peened GH4720Li superalloy using a DEM-FEM coupling RV simulation method[J]. International Journal of Mechanical Sciences,2021,209: 106689.1-106689.11.
    [18] FABBRO R,FOURNIER J,BALLARD P,et al. Physical study of laser produced plasma in confined geometry[J]. Journal of Applied Physics,1990,68(2): 775-784. doi: 10.1063/1.346783
    [19] XU Gaofeng,LUO Kaiyu,DAI Fengze,et al. Effects of scanning path and overlapping rate on residual stress of 316L stainless steel blade subjected to massive laser shock peening treatment with square spots[J]. Applied Surface Science,2019,481: 1053-1063. doi: 10.1016/j.apsusc.2019.03.093
    [20] SUN Boyu,ZHAO Jibin,QIAO Hongchao,et al. Effects of square spot size and beam quality on residual stress of 7050 aluminum alloy by laser shock peening[J]. Materials Chemistry and Physics,2022,284: 126023.1-126023.10.
    [21] 杨玉致. 机械噪声控制技术[M]. 北京: 中国农业机械出版社, 1983.
    [22] 中国金属学会高温材料分会. 中国高温合金手册[M]. 北京: 中国标准出版社, 2012.
    [23] 王瑞荣,陈伟民,谢东珠. 斜辐照激光等离子体辐射X光子特性[J]. 强激光与粒子束,2008,20(3): 387-390.

    WANG Ruirong,CHEN Weimin,XIE Dongzhu. Characteristics of X-ray photons in tilted incident laser-produced plasma[J]. High Power Laser and Particles Beams,2008,20(3): 387-390. (in Chinese)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  112
  • HTML浏览量:  93
  • PDF量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 网络出版日期:  2022-09-30

目录

    /

    返回文章
    返回