留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双级涡轮组件结构状态对高速转子动力特性影响

马艳红 李毅沣 陈雪骑 王永锋 洪杰

马艳红, 李毅沣, 陈雪骑, 等. 双级涡轮组件结构状态对高速转子动力特性影响[J]. 航空动力学报, 2024, 39(X):20220329 doi: 10.13224/j.cnki.jasp.20220329
引用本文: 马艳红, 李毅沣, 陈雪骑, 等. 双级涡轮组件结构状态对高速转子动力特性影响[J]. 航空动力学报, 2024, 39(X):20220329 doi: 10.13224/j.cnki.jasp.20220329
MA Yanhong, LI Yifeng, CHEN Xueqi, et al. Influences of configuration state of double-stage turbine assembly on rotor dynamic characteristics[J]. Journal of Aerospace Power, 2024, 39(X):20220329 doi: 10.13224/j.cnki.jasp.20220329
Citation: MA Yanhong, LI Yifeng, CHEN Xueqi, et al. Influences of configuration state of double-stage turbine assembly on rotor dynamic characteristics[J]. Journal of Aerospace Power, 2024, 39(X):20220329 doi: 10.13224/j.cnki.jasp.20220329

双级涡轮组件结构状态对高速转子动力特性影响

doi: 10.13224/j.cnki.jasp.20220329
基金项目: 国家科技重大专项(2017-Ⅳ-0011-0048, 2017-Ⅰ-0008-0009)
详细信息
    作者简介:

    马艳红(1975-),女,教授、博士生导师,博士,主要从事航空发动机结构动力学、金属橡胶结构设计及应用等方向研究

  • 中图分类号: V231.96

Influences of configuration state of double-stage turbine assembly on rotor dynamic characteristics

  • 摘要:

    针对采用双级涡轮设计的高速转子,研究双级涡轮组件结构状态变化对转子动力特性的影响。通过表征工作载荷对双级涡轮组件界面接触状态和局部角向刚度-变形特征的影响过程,建立了双级涡轮组件结构状态分析模型,揭示了组件结构状态变化的力学机理;建立组件结构状态在转子动力学模型中的等效方法,研究其对转子固有振动特性的影响。研究表明:复杂工作载荷作用下组件中各构件变形的不协调,将引起的连接界面接触力学特性变化,造成组件角向刚度特性的改变;在旋转惯性力矩作用下,涡轮组件角向刚度存在“突降”现象,使得转子弯曲模态振型陀螺效应和临界转速显著降低。仿真结果表明:考虑涡轮组件结构状态突变后,转子弯曲模态临界转速约下降17%。

     

  • 图 1  双级涡轮组件结构示意图

    Figure 1.  Schematic diagram of double-stage turbine assembly

    图 2  双级涡轮组件结构物理模型

    Figure 2.  Physical model of double-stage turbine assembly

    图 3  双级涡轮组件变形示意图(装配阶段)

    Figure 3.  Schematic diagram of deformation of double-stage turbine assembly (assembling stage)

    图 4  双级涡轮组件变形示意图(离心载荷)

    Figure 4.  Schematic diagram of deformation of double-stage turbine assembly (centrifugal load)

    图 5  双级涡轮组件变形示意图(轴向压力载荷)

    Figure 5.  Schematic diagram of deformation of double-stage turbine assembly (axial aerodynamic load)

    图 6  连接界面接触状态及接触应力变化示意图

    Figure 6.  Variation diagram of the joint interface contact state and contact normal stress

    图 7  双级涡轮组件角向刚度模型

    Figure 7.  Angular stiffness model of the double-stage turbine assembly

    图 8  双级高压涡轮组件有限元模型

    Figure 8.  Finite element model of double-stage high-pressure turbine assembly

    图 9  预紧载荷对端面压紧力的影响规律

    Figure 9.  Influence rule of preload on pressing force of end face

    图 10  转速对止口端面压紧力的影响规律

    Figure 10.  Influence rule of rotate speed on pressing force of spigot end face

    图 11  双级涡轮盘组件温度场分布(最大工作状态)

    Figure 11.  Temperature field distribution of double-stage turbine assembly (maximum operating condition)

    图 12  组件轴向变形云图(最大工作状态)

    Figure 12.  Axial deformation diagram of assembly(maximum operating condition)

    图 13  止口端面压紧力对组件角向刚度的影响规律

    Figure 13.  Influence rule of pressing force of spigot end face on angular stiffness of assembly

    图 14  组件角度刚度突变的机理解释图

    Figure 14.  Mechanism explanation diagram of sudden change in angular stiffness of assembly

    图 15  组件轴向变形云图(Fp2=20 kN, M=2000 N·m)

    Figure 15.  Axial deformation nephogram of the assembly(Fp2=20 kN, M=2000 N·m)

    图 16  旋转惯性力矩示意图

    Figure 16.  Schematic diagram of the rotating inertia moment

    图 17  高压转子有限元模型

    Figure 17.  Finite element model of high-pressure rotor

    图 18  涡轮组件结构状态等效模拟方法示意图

    Figure 18.  Schematic diagram of the equivalent simulation method for configuration state of turbine assembly

    图 19  考虑组件结构状态突变的转子Campbell图

    Figure 19.  Campbell diagram of rotor considering assembly configuration state sudden change

    图 20  转子弯曲模态振型

    Figure 20.  Rotor bending mode shape

    图 21  弯曲模态振型GM因子变化规律

    Figure 21.  Change rule of GM factor of bending mode shape

    表  1  转子弯曲模态临界转速

    Table  1.   Critical speed of rotor bending mode

    弯曲模态临界转速/(r/min) 变化率/%
    考虑突变 不考虑突变
    24473 20307 −17
    下载: 导出CSV
  • [1] 洪杰,马艳红. 航空燃气涡轮发动机结构与设计[M]. 北京: 科学出版社,2021. HONG Jie,MA Yanhong. Structure and design of aircraft gas turbine engine[M]. Beijing: Science Press,2021. (in Chinese

    HONG Jie, MA Yanhong. Structure and design of aircraft gas turbine engine[M]. Beijing: Science Press, 2021. (in Chinese)
    [2] KRASYUK A M,KOSYKH P V. Calculating bending vibrations of main axial mine fan rotor shaft[J]. Journal of Mining Science,2016,52(3): 502-510. doi: 10.1134/S1062739116030730
    [3] 李小军,朱汉华,范世东,等. 船舶艉轴承刚度和螺旋桨陀螺效应对轴系回旋振动特性影响的分析[J]. 船舶力学,2019,23(7): 851-858. LI Xiaojun,ZHU Hanhua,FAN Shidong,et al. Influencing law research of stern journal bearing’s stiffness and propeller’s gyroscopic effect on whirling vibration of the ship propulsive shafting[J]. Journal of Ship Mechanics,2019,23(7): 851-858. (in Chinese doi: 10.3969/j.issn.1007-7294.2019.07.011

    LI Xiaojun, ZHU Hanhua, FAN Shidong, et al. Influencing law research of stern journal bearing’s stiffness and propeller’s gyroscopic effect on whirling vibration of the ship propulsive shafting[J]. Journal of Ship Mechanics, 2019, 23(7): 851-858. (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.07.011
    [4] GONG Yongping,EHMANN K F,LIN Cheng. Analysis of dynamic characteristics of micro-drills[J]. Journal of Materials Processing Technology,2003,141(1): 16-28. doi: 10.1016/S0924-0136(02)00947-0
    [5] LIN Chiwei,TU J F,KAMMAN J. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation[J]. International Journal of Machine Tools and Manufacture,2003,43(10): 1035-1050. doi: 10.1016/S0890-6955(03)00091-9
    [6] SHE Houxin,LI Chaofeng,TANG Qiansheng,et al. Influence mechanism of disk position and flexibility on natural frequencies and critical speeds of a shaft-disk-blade unit[J]. Journal of Sound and Vibration,2020,469: 115156. doi: 10.1016/j.jsv.2019.115156
    [7] 刘伟佳. 陀螺效应对转子临界转速的影响[J]. 吉林师范大学学报(自然科学版),2012,33(3): 47-49. LIU Weijia. Impact of gyroscopic effect on the critical speed of the rotor[J]. Jilin Normal University Journal (Natural Science Edition),2012,33(3): 47-49. (in Chinese

    LIU Weijia. Impact of gyroscopic effect on the critical speed of the rotor[J]. Jilin Normal University Journal (Natural Science Edition), 2012, 33(3): 47-49. (in Chinese)
    [8] 陈萌,马艳红,刘书国,等. 航空发动机整机有限元模型转子动力学分析[J]. 北京航空航天大学学报,2007,33(9): 1013-1016. CHEN Meng,MA Yanhong,LIU Shuguo,et al. Rotordynamic analysis of whole aero-engine models based on finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(9): 1013-1016. (in Chinese doi: 10.3969/j.issn.1001-5965.2007.09.003

    CHEN Meng, MA Yanhong, LIU Shuguo, et al. Rotordynamic analysis of whole aero-engine models based on finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9): 1013-1016. (in Chinese) doi: 10.3969/j.issn.1001-5965.2007.09.003
    [9] 谢强. 转子活塞发动机动力学特性研究与分析[D]. 长沙: 国防科学技术大学,2013: 36-38. XIE Qiang. The dynamic characteristics research and analysis of the rotor engine[D]. Changsha: National University of Defense Technology,2013: 36-38. (in Chinese

    XIE Qiang. The dynamic characteristics research and analysis of the rotor engine[D]. Changsha: National University of Defense Technology, 2013: 36-38. (in Chinese)
    [10] MAT ISA A A,PENNY J,GARVEY S D. Dynamics of bolted and laminated rotors [C]// The International Society for Optical Engineering,San Antonio: SPIE,2000: 867-872.
    [11] KLOMPAS N. Effects of anomalous rotor joints on turbomachine dynamics[J]. Journal of Engineering for Power,1983,105(4): 927-934. doi: 10.1115/1.3227502
    [12] 姚星宇,王建军,翟学. 航空发动机螺栓连接薄层单元建模方法[J]. 北京航空航天大学学报,2015,41(12): 2269-2279. YAO Xingyu,WANG Jianjun,ZHAI Xue. Modeling method of bolted joints of aero-engine based on thin-layer element[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(12): 2269-2279. (in Chinese

    YAO Xingyu, WANG Jianjun, ZHAI Xue. Modeling method of bolted joints of aero-engine based on thin-layer element[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2269-2279. (in Chinese)
    [13] 姚星宇,王建军. 航空发动机螺栓连接载荷与结构参数对连接刚度影响规律[J]. 推进技术,2017,38(2): 424-433. YAO Xingyu,WANG Jianjun. Effects of load and structure parameters of aero-engine bolted joints on joint stiffness[J]. Journal of Propulsion Technology,2017,38(2): 424-433. (in Chinese

    YAO Xingyu, WANG Jianjun. Effects of load and structure parameters of aero-engine bolted joints on joint stiffness[J]. Journal of Propulsion Technology, 2017, 38(2): 424-433. (in Chinese)
    [14] QIN Z Y,HAN Q K,CHU F L. Analytical model of bolted disk–drum joints and its application to dynamic analysis of jointed rotor[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2014,228(4): 646-663. doi: 10.1177/0954406213489084
    [15] QIN Zhaoye,HAN Qinkai,CHU Fulei. Bolt loosening at rotating joint interface and its influence on rotor dynamics[J]. Engineering Failure Analysis,2016,59: 456-466. doi: 10.1016/j.engfailanal.2015.11.002
    [16] 洪杰,徐翕如,苏志敏,等. 高速转子连接结构刚度损失及振动特性[J]. 北京航空航天大学学报,2019,45(1): 18-25. HONG Jie,XU Xiru,SU Zhimin,et al. Joint stiffness loss and vibration characteristics of high-speed rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(1): 18-25. (in Chinese

    HONG Jie, XU Xiru, SU Zhimin, et al. Joint stiffness loss and vibration characteristics of high-speed rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 18-25. (in Chinese)
    [17] ZHUO M,YANG L H,YU L. Contact stiffness calculation and effects on rotordynamic of rod fastened rotor[R]. Colin McAteer: ASME International Mechanical Engineering Congress and Exposition (IMECE2016),2016.
    [18] HONG Jie,CHEN Xueqi,WANG Yongfeng,et al. Optimization of dynamics of non-continuous rotor based on model of rotor stiffness[J]. Mechanical Systems and Signal Processing,2019,131: 166-182. doi: 10.1016/j.ymssp.2019.05.030
    [19] 马艳红,倪耀宇,陈雪骑,等. 长拉杆-止口连接弯曲刚度损失及对转子系统振动响应影响[J]. 航空学报,2021,42(3): 223861. MA Yanhong,NI Yaoyu,CHEN Xueqi,et al. Bending stiffness loss of rod-rabbet joints and its effect on vibration response of rotor systems[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 223861. (in Chinese

    MA Yanhong, NI Yaoyu, CHEN Xueqi, et al. Bending stiffness loss of rod-rabbet joints and its effect on vibration response of rotor systems[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 223861. (in Chinese)
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  4
  • HTML浏览量:  1
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回