留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主被动TVS技术的低温推进剂贮箱控压特性

周振君 吴俊 巩萌萌 吴勇 赵允宁 程龙

周振君, 吴俊, 巩萌萌, 等. 基于主被动TVS技术的低温推进剂贮箱控压特性[J]. 航空动力学报, 2024, 39(10):20220331 doi: 10.13224/j.cnki.jasp.20220331
引用本文: 周振君, 吴俊, 巩萌萌, 等. 基于主被动TVS技术的低温推进剂贮箱控压特性[J]. 航空动力学报, 2024, 39(10):20220331 doi: 10.13224/j.cnki.jasp.20220331
ZHOU Zhenjun, WU Jun, GONG Mengmeng, et al. Study on pressure control characteristics of cryogenic propellant tank based on active and passive TVS technology[J]. Journal of Aerospace Power, 2024, 39(10):20220331 doi: 10.13224/j.cnki.jasp.20220331
Citation: ZHOU Zhenjun, WU Jun, GONG Mengmeng, et al. Study on pressure control characteristics of cryogenic propellant tank based on active and passive TVS technology[J]. Journal of Aerospace Power, 2024, 39(10):20220331 doi: 10.13224/j.cnki.jasp.20220331

基于主被动TVS技术的低温推进剂贮箱控压特性

doi: 10.13224/j.cnki.jasp.20220331
详细信息
    作者简介:

    周振君(1987-),男,高级工程师,博士,主要从事低温推进剂贮存技术研究

  • 中图分类号: V511+

Study on pressure control characteristics of cryogenic propellant tank based on active and passive TVS technology

  • 摘要:

    为研究主被动热力学排气技术在低温贮箱压力控制方面的特性,搭建了集成主被动热力学排气系统的低温试验平台,开展了被动热力学排气(PTVS)控压、混合控压以及主动热力学排气(ATVS)等模式,贮箱加热分为0、40 W和80 W工况下的液氮贮箱压力控制正交测试,并进行了持续时间10 h的长耗时低温贮箱控压过程测试。试验结果表明:控压循环时间随着加热功率的增加而减少,控压循环频率更高;输入功率不变时,PTVS单次循环控压时间最长,混合控压单次循环时间最短。混合与ATVS结合的低温贮箱控压方法在近10 h的测试过程中运行稳定,将贮箱压力控制在预定区间内。节流制冷量的输入削弱了外界漏热的影响,液相升温速率逐渐降低趋于平缓,液相温度最终接近热分层处流体温度。

     

  • 图 1  低温贮箱控压方案

    Figure 1.  Scheme of pressure control of cryogenic tank

    图 2  低温贮箱控压试验系统示意图

    Figure 2.  Schematic diagram of pressure control experiment system for cryogenic tank

    图 3  多功能集成低温试验平台

    Figure 3.  Multifunctional integrated low temperature experiment platform

    图 4  PTVS控压测试压力曲线(P=0 W)

    Figure 4.  Pressure curve under PTVS experiment (P=0 W)

    图 5  PTVS控压测试压力曲线(P=40 W,80 W)

    Figure 5.  Pressure curve under PTVS experiment (P=40 W,80 W)

    图 6  混合控压测试压力曲线(P=0 W)

    Figure 6.  Pressure curve under mixing experiment (P=0 W)

    图 7  混合控压测试压力曲线( P=40 W,80 W)

    Figure 7.  Pressure curve under mixing experiment(P=40 W,80 W)

    图 8  ATVS控压测试压力曲线(P=0 W)

    Figure 8.  Pressure curve under ATVS experiment (P=0 W)

    图 9  ATVS控压测试压力曲线( P=40 W,80 W)

    Figure 9.  Pressure curve under ATVS experiment(P=40 W,80 W)

    图 10  液氮工质的低温贮箱10 h控压过程压力曲线

    Figure 10.  Pressure curve in the 10 h experiment with LN2 as the working medium in cryogenic tank

    图 11  液氮工质的低温贮箱10 h控压过程温度曲线

    Figure 11.  Curve of temperature change in the 10 h experiment of pressure control with LN2 as the working medium in cryogenic tank

    表  1  不同模式单次控压循环时间对比

    Table  1.   Comparison of pressure control time in single cycle time of different modes

    控压方式 加热功率/W tmax/tmin
    0 40 80
    PTVS控压 7072 s 4351 s 3751 s 1.89
    混合控压 389 s 299 s 212 s 1.83
    ATVS控压 2297 s 2000 s 1837 s 1.25
    下载: 导出CSV
  • [1] 鲁宇,汪小卫,GIORGIO S,等. 在轨加注站概念研究[J]. 导弹与航天运载技术,2015(1): 1-7. LU Yu,WANG Xiaowei,GIORGIO S,et al. Space transportation concept supported by on-orbit propellant depots[J]. Missiles and Space Vehicles,2015(1): 1-7. (in Chinese

    LU Yu, WANG Xiaowei, GIORGIO S, et al. Space transportation concept supported by on-orbit propellant depots[J]. Missiles and Space Vehicles, 2015(1): 1-7. (in Chinese)
    [2] 吴胜宝,申麟,董晓琳,等. 低温推进剂在轨贮存与管理系统方案研究[J]. 载人航天,2017,23(3): 365-369. WU Shengbao,SHEN Lin,DONG Xiaolin,et al. Scheme research of cryogenicpropellant on-orbit storage and management system[J]. Manned Spaceflight,2017,23(3): 365-369. (in Chinese

    WU Shengbao, SHEN Lin, DONG Xiaolin, et al. Scheme research of cryogenicpropellant on-orbit storage and management system[J]. Manned Spaceflight, 2017, 23(3): 365-369. (in Chinese)
    [3] The White House. National strategy for critical and emerging technology [EO/OL].(2022-02-16) [2022-05-13]. https://www.lexology.com/library/detail.aspx?g=7b5ab55d-9e80-46ee-8fe2-6d79a93a7d54.
    [4] BAO W,WANG X. Development highly reliable and low-cost technology for access to space,embrace the new space economy era[J]. Aerospace China,2019,20(4): 23-30.
    [5] 李佳超,梁国柱,王夕,等. 氢氧推进剂在轨加注若干关键问题研究进展[J]. 宇航总体技术,2019,3(6): 60-74. LI Jiachao,LIANG Guozhu,WANG Xi,et al. Research progress on several key problems of on-orbit refueling technologies for hydrogen-oxygen propellants[J]. Astronautical Systems Engineering Technology,2019,3(6): 60-74. (in Chinese

    LI Jiachao, LIANG Guozhu, WANG Xi, et al. Research progress on several key problems of on-orbit refueling technologies for hydrogen-oxygen propellants[J]. Astronautical Systems Engineering Technology, 2019, 3(6): 60-74. (in Chinese)
    [6] MOTIL S M. Technology demonstration mission (TMD) cryogenic propellant storage & transfer (CPST). CPST project overview and cryogenic activities[R]. Cleveland,US: NASA Glenn Research Center,2013.
    [7] JOHNSON W L. Recent ground hold and rapid depressurization experimenting of multilayer system[R]. Cleveland,US: the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2014.
    [8] LIN C S,VAN DRESAR N T,HASAN M M. Pressure control analysis of cryogenic storage systems[J]. Journal of Propulsion and Power,2004,20(3): 480-485. doi: 10.2514/1.10387
    [9] NGUYEN H. Zero thermodynamic venting system(TVS) performance prediction program[R]. Washington DC,US: National Aeronautics and Space Administration,1994: 1-136.
    [10] CADY E C. Design of thermodynamic vent/screen baffle cryogenic storage system[J]. Journal of Spacecraft and Rockets,1975,12(8): 501-502. doi: 10.2514/3.57008
    [11] MER S,THIBAULT J P,CORRE C. Active insulation technique applied to the experimental analysis of a thermodynamic control system for cryogenic propellant storage[J]. Journal of Thermal Science and Engineering Applications,2016,8(2): 021024. doi: 10.1115/1.4032761
    [12] MER S,FERNANDEZ D,THIBAULT J P,et al. Optimal design of a Thermodynamic Vent System for cryogenic propellant storage[J]. Cryogenics,2016,80: 127-137. doi: 10.1016/j.cryogenics.2016.09.012
    [13] BAE J,YOO J,JIN Lingxue,et al. Experimental investigation of passive thermodynamic vent system (TVS) with liquid nitrogen[J]. Cryogenics,2018,89: 147-156. doi: 10.1016/j.cryogenics.2017.11.001
    [14] 周振君,雷刚,王天祥,等. 低温液氮贮箱增压及排气流量控制方法[J]. 航空动力学报,2018,33(5): 1263-1269. ZHOU Zhenjun,LEI Gang,WANG Tianxiang,et al. Control method of pressurization and venting flow rate in cryogenic tank[J]. Journal of Aerospace Power,2018,33(5): 1263-1269. (in Chinese

    ZHOU Zhenjun, LEI Gang, WANG Tianxiang, et al. Control method of pressurization and venting flow rate in cryogenic tank[J]. Journal of Aerospace Power, 2018, 33(5): 1263-1269. (in Chinese)
    [15] 周振君,刘欣. 低温推进剂在轨压力控制方法及效能对比分析[J]. 低温工程,2019(2): 41-46. ZHOU Zhenjun,LIU Xin. Analysis of on-orbit pressure control method and effectiveness comparison of cryogenic propellants[J]. Cryogenics,2019(2): 41-46. (in Chinese

    ZHOU Zhenjun, LIU Xin. Analysis of on-orbit pressure control method and effectiveness comparison of cryogenic propellants[J]. Cryogenics, 2019(2): 41-46. (in Chinese)
    [16] 周振君,刘欣,张少华,等. 热力学排气系统对液氮贮箱控压特性的影响分析[J]. 宇航学报,2020,41(5): 599-607. ZHOU Zhenjun,LIU Xin,ZHANG Shaohua,et al. Analysis for the effects of TVS on the pressure control characteristics of the liquid nitrogen storage tank[J]. Journal of Astronautics,2020,41(5): 599-607. (in Chinese

    ZHOU Zhenjun, LIU Xin, ZHANG Shaohua, et al. Analysis for the effects of TVS on the pressure control characteristics of the liquid nitrogen storage tank[J]. Journal of Astronautics, 2020, 41(5): 599-607. (in Chinese)
    [17] 任建华,谢福寿,王磊,等. 热力学排气系统中节流效应及其冷量利用分析[J]. 宇航学报,2020,41(4): 490-498. REN Jianhua,XIE Fushou,WANG Lei,et al. Analysis on throttling effect and cooling capacity utilization in thermodynamic vent system[J]. Journal of Astronautics,2020,41(4): 490-498. (in Chinese

    REN Jianhua, XIE Fushou, WANG Lei, et al. Analysis on throttling effect and cooling capacity utilization in thermodynamic vent system[J]. Journal of Astronautics, 2020, 41(4): 490-498. (in Chinese)
    [18] LIU Zhan,LI Yanzhong,XIA Siqi,et al. Ground experimental investigation of thermodynamic vent system with HCFC123[J]. International Journal of Thermal Sciences,2017,122: 218-230. doi: 10.1016/j.ijthermalsci.2017.08.017
    [19] LIU Zhan,LI Yanzhong,ZHANG Shaohua,et al. Experimental study on thermodynamic vent system with different influence factors[J]. International Journal of Energy Research,2018,42(3): 1040-1055. doi: 10.1002/er.3900
    [20] WANG Bin,HUANG Yonghua,WU Jingyi,et al. Experimental study on pressure control of liquid nitrogen tank by thermodynamic vent system[J]. Applied Thermal Engineering,2017,125: 1037-1046. doi: 10.1016/j.applthermaleng.2017.07.067
    [21] DELHAYE J M. Jump conditions and entropy sources in two-phase systems. Local instant formulation[J]. International Journal of Multiphase Flow,1974,1(3): 395-409. doi: 10.1016/0301-9322(74)90012-3
    [22] MESEROLE J,JONES O,BRENNAN S,et al. Mixing-Induced ullage condensation and fluid destratifcation: AIAA-87-2018[R]. San Diego,US: 23rd Joint Propulsion Conference,1987.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  77
  • HTML浏览量:  87
  • PDF量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 网络出版日期:  2024-05-13

目录

    /

    返回文章
    返回