留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维空间矢量应力场强法的SiCp/Al复合材料缺口疲劳强度预测

徐颖 杨涛 王学民 崔海涛 黄申

徐颖, 杨涛, 王学民, 等. 基于三维空间矢量应力场强法的SiCp/Al复合材料缺口疲劳强度预测[J]. 航空动力学报, 2024, 39(4):20220336 doi: 10.13224/j.cnki.jasp.20220336
引用本文: 徐颖, 杨涛, 王学民, 等. 基于三维空间矢量应力场强法的SiCp/Al复合材料缺口疲劳强度预测[J]. 航空动力学报, 2024, 39(4):20220336 doi: 10.13224/j.cnki.jasp.20220336
XU Ying, YANG Tao, WANG Xuemin, et al. Notched fatigue strength prediction of SiCp/Al composites based on the three-dimensional space vector stress field intensity method[J]. Journal of Aerospace Power, 2024, 39(4):20220336 doi: 10.13224/j.cnki.jasp.20220336
Citation: XU Ying, YANG Tao, WANG Xuemin, et al. Notched fatigue strength prediction of SiCp/Al composites based on the three-dimensional space vector stress field intensity method[J]. Journal of Aerospace Power, 2024, 39(4):20220336 doi: 10.13224/j.cnki.jasp.20220336

基于三维空间矢量应力场强法的SiCp/Al复合材料缺口疲劳强度预测

doi: 10.13224/j.cnki.jasp.20220336
基金项目: 中国航发四川燃气涡轮研究院外委课题
详细信息
    作者简介:

    徐颖(1979-),女,副教授,博士,主要从事先进复合材料的损伤失效、强度和疲劳研究。E-mail:xying@nuaa.edu.cn

  • 中图分类号: V1

Notched fatigue strength prediction of SiCp/Al composites based on the three-dimensional space vector stress field intensity method

  • 摘要:

    为了考虑应力梯度对SiCp/Al复合材料结构疲劳强度的影响,基于三维空间矢量应力场强法和光滑件疲劳强度,发展了一种SiCp/Al复合材料缺口疲劳强度预测方法,其中三维空间矢量应力场强法计算中分别应用了经典一维应力场强与有效距离点应力场强的等效应力积分形式,避免了构建三维权函数和人为确定疲劳损伤区域。采用升降法制定了SiCp/2009Al复合材料光滑件疲劳试验方案,获得了SiCp/2009Al复合材料107循环周次对应的轴向(R=−1)疲劳强度为180.91 MPa,并以散点法开展疲劳试验获得了SiCp/2009Al疲劳寿命分布,光滑件疲劳试验结果显示SiCp/2009Al复合材料应力-寿命关系存在明显的平台区。采用逐级加载法开展了SiCp/2009Al复合材料缺口件轴向(R=−1)疲劳试验,获得了缺口件的疲劳强度为82.2 MPa。缺口件疲劳强度预测结果与试验结果吻合较好,最大误差在10%以内,其中基于有效距离点应力场强的三维空间矢量应力场强法建立的SiCp/Al复合材料缺口疲劳强度预测方法预测精度更高。

     

  • 图 1  SiCp/2009Al复合材料静子叶片局部结构[1]

    Figure 1.  Local structure of SiCp/2009Al composite stator blade[1]

    图 2  缺口疲劳试件尺寸图(单位:mm)

    Figure 2.  Dimension drawing of notched fatigue specimen (unit: mm)

    图 3  QBG-50B高频疲劳试验机

    Figure 3.  QBG-50B high-frequency fatigue testing machine

    图 4  光滑试件高周疲劳寿命结果

    Figure 4.  High cycle fatigue life results of smooth specimens

    图 5  主计算方向与其余计算方向夹角示意图

    Figure 5.  Sketch of angles between main calculation direction and other calculation directions

    图 6  SiCp/2009Al缺口疲劳强度预测方法流程

    Figure 6.  Process of SiCp/2009Al notched fatigue strength prediction method

    图 7  三维矢量空间应力场强法计算域示意图

    Figure 7.  Sketch of calculation region of three-dimensional vector space stress field intensity method

    图 8  缺口试件边界条件示意图

    Figure 8.  Sketch of boundary conditions of notched specimen

    图 9  缺口件危险区域应力分布云图

    Figure 9.  Stress nephogram in dangerous area of notched specimen

    图 10  计算域及表面网格划分示意图

    Figure 10.  Sketch of calculation region and surface meshing

    图 11  已知节点及计算方向分布图示

    Figure 11.  Sketch of the distribution of known nodes and calculation directions

    图 12  主计算方向的应力及相对应力梯度

    Figure 12.  Stress and relative stress gradient in main calculation direction

    图 13  计算方向$\langle $0.2867, –2.8241, 0.6326$\rangle $的应力及相对应力梯度分布

    Figure 13.  Stress and relative stress gradient in calculation direction $\langle $0.2867, –2.8241, 0.6326$\rangle $

    表  1  材料基本力学性能[17]

    Table  1.   Material mechanical properties parameters[17]

    屈服强度$ {\sigma }_{ {\rm{s} } } $/MPa抗拉强度${\sigma }_{{\rm{b}}}$/MPa弹性模量E/GPa
    419.2541.5103.8
    下载: 导出CSV

    表  2  升降法试验数据

    Table  2.   Test results measured by up-and-down method

    应力Si/MPa试样系列号
    123456789101112
    220××
    200×××
    180×
    160
    140
    注:○表示通过;×表示失效。
    下载: 导出CSV

    表  3  试验数据分析

    Table  3.   Test data analysis

    应力/MPa应力水平ifiifii2fi
    2202248
    2001333
    1800100
    总和6711
    下载: 导出CSV

    表  4  缺口件疲劳强度试验结果

    Table  4.   Fatigue strength test results of notched specimens

    编号加载级数${{\sigma } }_{\rm{f} }$/MPa${{N} }_{\rm{f} }$/107${ {\sigma } }_{\rm{es} }$/MPa
    V12830.98680.30
    V24860.71783.33
    V36800.35278.06
    V48890.36787.10
    均值82.20
    下载: 导出CSV

    表  5  缺口试件疲劳强度预测结果

    Table  5.   Fatigue strength prediction results of notched specimen

    参数试验值基于经典一维的
    三维空间矢量
    应力场强法
    基于有效距离点的
    三维空间矢量
    应力场强法
    疲劳强度/MPa82.2086.7482.16
    误差/%5.520.05
    下载: 导出CSV
  • [1] 叶俊青, 王东, 张荣霞, 等. SiC颗粒增强铝基复合材料叶片锻件及其性能研究[C]//2019年(第四届)中国航空科学技术大会论文集. 沈阳: 中国航空学会, 2019: 510-518.
    [2] 吴琼,邓瑛,姚罡,等. 颗粒增强铝基复合材料结构高阶振型疲劳试验技术研究[J]. 航空制造技术,2021,64(22): 91-96.

    WU Qiong,DENG Ying,YAO Gang,et al. Research on high order vibration mode fatigue test technology of particle reinforced aluminum matrix composite structure[J]. Aeronautical Manufacturing Technology,2021,64(22): 91-96. (in Chinese)
    [3] 赵丙峰,谢里阳,赵志强,等. 基于应力场强法的缺口构件场强值算法[J]. 机械工程学报,2018,54(24): 88-97. doi: 10.3901/JME.2018.24.088

    ZHAO Bingfeng,XIE Liyang,ZHAO Zhiqiang,et al. Field stress intensity calculation of notched component specimens based on field intensity method[J]. Journal of Mechanical Engineering,2018,54(24): 88-97. (in Chinese) doi: 10.3901/JME.2018.24.088
    [4] 奚蔚,姚卫星. 缺口件疲劳寿命分布预测的有效应力法[J]. 固体力学学报,2013,34(2): 205-212.

    XI Wei,YAO Weixing. Effective stress model for fatigue life distribution of notched specimen[J]. Chinese Journal of Solid Mechanics,2013,34(2): 205-212. (in Chinese)
    [5] 姚卫星. 金属材料疲劳行为的应力场强法描述[J]. 固体力学学报,1997,18(1): 38-48.

    YAO Weixing. The description for fatigue behaviours of metals by stress field intensity approach[J]. Acta Mechanica Solida Sinica,1997,18(1): 38-48. (in Chinese)
    [6] 郑楚鸿. 高周疲劳设计方法: 应力场强法的研究[D]. 北京: 清华大学, 1984.

    ZHENG Chuhong. High cycle fatigue design method: research on stress field strength method[D]. Beijing: Tsinghua University, 1984. (in Chinese)
    [7] YAO Weixing. Stress field intensity approach for predicting fatigue life[J]. International Journal of Fatigue,1993,15(3): 243-246. doi: 10.1016/0142-1123(93)90182-P
    [8] YAO Weixing,XIA Kaiquan,GU Yi. On the fatigue Notch factor, Kf[J]. International Journal of Fatigue,1995,17(4): 245-251. doi: 10.1016/0142-1123(95)93538-D
    [9] YAO Weixing,YE Bin,ZHENG Lichun. A verification of the assumption of anti-fatigue design[J]. International Journal of Fatigue,2001,23(3): 271-277. doi: 10.1016/S0142-1123(00)00083-9
    [10] LOU Guokang,WEN Weidong,WU Fuxian,et al. Vibration fatigue probabilistic life prediction model and method for blade[J]. Transactions of Nanjing University of Aeronautics and Astronautics,2018,35(3): 494-506.
    [11] 刘晓丰,何欣,刘强. 遥感仪器光机系统用高体分SiCp/Al复合材料的疲劳研究[J]. 红外,2013,34(10): 20-25.

    LIU Xiaofeng,HE Xin,LIU Qiang. Research on fatigue of high volume fraction SiCp/Al composite material used in opto-mechanical system of remote sensing instrument[J]. Infrared,2013,34(10): 20-25. (in Chinese)
    [12] 于维成,袁金才,王中光. SiCp/6061Al复合材料的疲劳行为[J]. 金属学报,1990,26(6): 127-131.

    YU Weicheng,YUAN Jincai,WANG Zhongguang. Fatigue behaviour of SiCp/6061Al composite[J]. Acta Metallrugica Sinica,1990,26(6): 127-131. (in Chinese)
    [13] 左涛,樊建中,肖伯律,等. 颗粒增强铝基复合材料疲劳断裂研究[J]. 稀有金属,2007,31(4): 569-572.

    ZUO Tao,FAN Jianzhong,XIAO Bolü,et al. Fatigue fracture of particle reinforced aluminum matrix composites[J]. Chinese Journal of Rare Metals,2007,31(4): 569-572. (in Chinese)
    [14] UEMATSU Y,TOKAJI K,KAWAMURA M. Fatigue behaviour of SiC-particulate-reinforced aluminium alloy composites with different particle sizes at elevated temperatures[J]. Composites Science and Technology,2008,68(13): 2785-2791. doi: 10.1016/j.compscitech.2008.06.005
    [15] LORCA J. High temperature fatigue of discontinuously-reinforced metal-matrix composites[J]. International Journal of Fatigue,2002,24(2/3/4): 233-240.
    [16] TOKAJI,SHIOTA,KOBAYASHI. Effect of particle size on fatigue behaviour in SiC particulate-reinforced aluminium alloy composites[J]. Fatigue & Fracture of Engineering Materials & Structures,1999,22(4): 281-288.
    [17] 蒋鹏琛,徐颖. 基于黏塑性本构理论的SiCp/2009Al循环本构模型研究[J]. 机械制造与自动化,2021,50(3): 95-98, 117.

    JIANG Pengchen,XU Ying. Research on SiCp/2009Al cycle constitutive model based on viscoplastic theory[J]. Machine Building & Automation,2021,50(3): 95-98, 117. (in Chinese)
    [18] 邹利华,樊建中,左涛,等. 粉末冶金15%SiCp/2009Al复合材料的高周疲劳性能[J]. 中国有色金属学报,2010,20(10): 1955-1961.

    ZOU Lihua,FAN Jianzhong,ZUO Tao,et al. High-cycle fatigue behavior of 15%SiCp/2009Al composite prepared by powder metallurgy process[J]. The Chinese Journal of Nonferrous Metals,2010,20(10): 1955-1961. (in Chinese)
    [19] QYLAFKU G,AZARI Z,KADI N,et al. Application of a new model proposal for fatigue life prediction on notches and key-seats[J]. International Journal of Fatigue,1999,21(8): 753-760. doi: 10.1016/S0142-1123(99)00046-8
    [20] ADIB-RAMEZANI H,JEONG J. Advanced volumetric method for fatigue life prediction using stress gradient effects at Notch roots[J]. Computational Materials Science,2007,39(3): 649-663. doi: 10.1016/j.commatsci.2006.08.017
    [21] KAYMAZ I. Application of kriging method to structural reliability problems[J]. Structural Safety,2005,27(2): 133-151. doi: 10.1016/j.strusafe.2004.09.001
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  69
  • HTML浏览量:  46
  • PDF量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 网络出版日期:  2023-07-13

目录

    /

    返回文章
    返回