留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空舱飞行高度模拟串级LADRC鲁棒控制技术

但志宏 张松 张和洪 钱秋朦 王信 赵伟

但志宏, 张松, 张和洪, 等. 高空舱飞行高度模拟串级LADRC鲁棒控制技术[J]. 航空动力学报, 2024, 39(4):20220343 doi: 10.13224/j.cnki.jasp.20220343
引用本文: 但志宏, 张松, 张和洪, 等. 高空舱飞行高度模拟串级LADRC鲁棒控制技术[J]. 航空动力学报, 2024, 39(4):20220343 doi: 10.13224/j.cnki.jasp.20220343
DAN Zhihong, ZHANG Song, ZHANG Hehong, et al. Robust cascade LADRC technology for flight altitude simulation of high altitude cell[J]. Journal of Aerospace Power, 2024, 39(4):20220343 doi: 10.13224/j.cnki.jasp.20220343
Citation: DAN Zhihong, ZHANG Song, ZHANG Hehong, et al. Robust cascade LADRC technology for flight altitude simulation of high altitude cell[J]. Journal of Aerospace Power, 2024, 39(4):20220343 doi: 10.13224/j.cnki.jasp.20220343

高空舱飞行高度模拟串级LADRC鲁棒控制技术

doi: 10.13224/j.cnki.jasp.20220343
基金项目: 中国航发四川燃气涡轮研究院稳定支持项目(GJCZ-0011-19); 福建省自然科学基金(2021J02008); 国家自然科学基金(62003088)
详细信息
    作者简介:

    但志宏(1973-),男,研究员,硕士,研究领域为航空发动机高空模拟技术。E-mail:406679678@qq.com

    通讯作者:

    张松(1968-),男,研究员,博士,研究领域为航空发动机高空模拟技术。E-mail:zs3365475@sohu.com

  • 中图分类号: V217;TP272

Robust cascade LADRC technology for flight altitude simulation of high altitude cell

  • 摘要:

    针对航空发动机高空舱飞行高度模拟控制系统存在的强非线性、高度不确定性、强外部扰动等实际工程问题,对抑制系统不确定性影响的主要控制方法进行了分析和讨论,设计了一种基于降阶线性扩张状态观测器(RLESO)的串级线性自抗扰(LADRC)鲁棒控制方法。分析了被控对象的主要特性和控制难点,并将广义受控对象分为蝶阀位置回路和飞行高度回路。对两个回路分别设计降阶扩张状态观测器和控制器并组建串级控制系统。通过控制仿真并与经典PID控制方法进行了对比分析,结果显示在推力瞬变试验控制仿真中,被控压力的最大波动值从3.5 kPa减小至0.8 kPa,表明了基于RLESO的串级LADRC技术能够显著提升高空台飞行高度模拟的控制品质,获得了较为理想的鲁棒控制性能和抗扰性能。

     

  • 图 1  高空台飞行高度模拟控制原理简图

    Figure 1.  Sketch of flight altitude simulation control principle of high altitude table

    图 2  大口径蝶阀流量特性模型

    Figure 2.  Flow characteristics model of large diameter butterfly valve

    图 3  排气扩压器数值模拟特性简图

    Figure 3.  Numerical simulation sketch of exhaust diffuser characteristics

    图 4  基于RLESO的1阶LADRC控制结构图

    Figure 4.  1st-order LADRC control structure based on RLESO

    图 5  基于RLESO的飞行高度调节串级LADRC控制结构图

    Figure 5.  RLESO-based flight altitude adjustment cascade LADRC control structure diagram

    图 6  PID控制效果

    Figure 6.  PID control effect

    图 7  串级LADRC控制效果

    Figure 7.  Cascade LADRC control effect

    图 8  PID控制和串级LADRC控制动态误差对比

    Figure 8.  Comparison of dynamic error between PID control and cascade LADRC control

    图 9  PID控制下蝶阀位置目标跟踪

    Figure 9.  Butterfly valve position target tracking under PID control

    图 10  LADRC控制下蝶阀位置目标跟踪

    Figure 10.  Butterfly valve position target tracking under LADRC control

    图 11  串级LADRC内环及外环RLSEO扰动估计

    Figure 11.  Cascade LADRC inner loop and outer loop RLSEO disturbance estimation

  • [1] 侯敏杰. 高空模拟试验技术[M]. 北京: 航空工业出版社, 2014.
    [2] MONTGOMERY P A, BURDETTE R, WILHITE L, et al. Modernization of a turbine engine test facility utilizing a real-time facility model and simulation[R]. ASME Paper 2001-GT-0573, 2001.
    [3] LUPPOLD R, MEISNER R, NORTON J. Design and evaluation of an auto-tuning control system for an altitude test facility[R]. ASME Paper 99-GT-061, 1999
    [4] DAVIS M,MONTGOMERY P. A flight simulation vision for aeropropulsion altitude ground test facilities[J]. Journal of Engineering for Gas Turbines and Power,2005,127(1): 8-17. doi: 10.1115/1.1806452
    [5] GARRARD D, SEELY J, ABEL L. An analysis of alternatives to provide a varying Mach number test capability at APTU[R]. AIAA 2006-8044, 2006.
    [6] BIERKAMP J, KÖCKE S, STAUDACHER S, et al. Influence of ATF dynamics and controls on jet engine performance[R]. ASME Paper GT2007-27586, 2007.
    [7] WEISSER M, BOLK S, STAUDACHER S. Hard-in-the-loop-simulation of a feed forward multivariable controller for the altitude test facility at the university of stuttgart[R]. Stuttgart, Germany: Deutscher Luft-und Raumfahrt Kongress, 2013.
    [8] 钱秋朦,但志宏,张松,等. 高空台进排气控制系统软件设计[J]. 燃气涡轮试验与研究,2019,32(4): 27-31, 36.

    QIAN Qiumeng,DAN Zhihong,ZHANG Song,et al. Software design of the simulated altitude test facility intake and exhaust control system[J]. Gas Turbine Experiment and Research,2019,32(4): 27-31, 36. (in Chinese)
    [9] 赵涌, 侯敏杰, 张松, 等. 航空发动机高空模拟试验排气环境压力模糊控制技术研究[J]. 燃气涡轮试验与研究, 2010, 23(3): 14-17, 55.

    ZHAO Yong, HOU Minjie, ZHANG Song, et al. Investigation of exhaust pressure fuzzy control technology in aero-engine altitude simulation test[J]. Gas Turbine Experiment and Research, 2010, 23(3): 14-17, 55. (in Chinese)
    [10] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510.

    GAO Zhiqiang. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12): 1498-1510. (in Chinese)
    [11] 李向阳, 高志强. 抗扰控制中的不变性原理[J/OL]. [2022-09-10]. http: //kns.cnki.net/kcms/detail/44.1240.TP.20190712.0934.012.html.
    [12] 吴真,曹东海,熊官送. 基于滑模变结构和扩张状态观测器的电动舵机复合控制方法[J]. 导航定位与授时,2019,6(2): 46-51.

    WU Zhen,CAO Donghai,XIONG Guansong. Electromechanical actuator control method based on sliding mode variable structure and extended state observer[J]. Navigation Positioning and Timing,2019,6(2): 46-51. (in Chinese)
    [13] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.

    HAN Jingqing. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19-23. (in Chinese)
    [14] 韩京清. 自抗扰控制技术[J]. 前沿科学,2007,1(1): 24-31.

    HAN Jingqing. Auto disturbances rejection control technique[J]. Frontier Science,2007,1(1): 24-31. (in Chinese)
    [15] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
    [16] 黄一,薛文超,赵春哲. 自抗扰控制纵横谈[J]. 系统科学与数学,2011,31(9): 1111-1129.

    HUANG Yi,XUE Wenchao,ZHAO Chunzhe. Active disturbance rejection control: methodology and theoretical analysis[J]. Journal of Systems Science and Mathematical Sciences,2011,31(9): 1111-1129. (in Chinese)
    [17] 黄一,薛文超. 自抗扰控制: 思想、应用及理论分析[J]. 系统科学与数学,2012,32(10): 1287-1307.

    HUANG Yi,XUE Wenchao. Active disturbance rejection control: methodology, applications and theoretical analysis[J]. Journal of Systems Science and Mathematical Sciences,2012,32(10): 1287-1307. (in Chinese)
    [18] TIAN Gang, GAO Zhiqiang. Frequency response analysis of active disturbance rejection based control system[C]//2007 IEEE International Conference on Control Applications. Piscataway, US: IEEE, 2007: 1595-1599.
    [19] 张海波,孙健国,孙立国. 一种涡轴发动机转速抗扰控制器设计及应用[J]. 航空动力学报,2010,25(4): 943-950.

    ZHANG Haibo,SUN Jianguo,SUN Liguo. Design and application of a disturbance rejection rotor speed control method for turbo-shaft engines[J]. Journal of Aerospace Power,2010,25(4): 943-950. (in Chinese)
    [20] 陈森,薛文超,黄一. 推力矢量飞行器的自抗扰控制设计及控制分配[J]. 控制理论与应用,2018,35(11): 1591-1600.

    CHEN Sen,XUE Wenchao,HUANG Yi. Active disturbance rejection control and control allocation for thrust-vectored aircraft[J]. Control Theory & Applications,2018,35(11): 1591-1600. (in Chinese)
    [21] 张和洪, 谢晏清, 王娟, 等. Levant微分器参数整定算法及在高空台系统的应用[J]. 控制理论与应用, 2023, 40(10): 1831-1838.

    ZHANG Hehong, XIE Yanqing, WANG Juan,et al. Parameter tuning algorithm for levant’s differentiator and its application in flight environment simulation control system[J]. Control Theory & Applications, 2023, 40(10): 1831-1838. (in Chinese)
    [22] GAO Zhiqiang. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Piscataway, US: IEEE, 2003: 4989-4996.
    [23] GAO Zhiqiang. Active disturbance rejection control: a paradigm shift in feedback control system design[C]//2006 American Control Conference. Piscataway, US: IEEE, 2006: 2399-2405.
    [24] 薛文超. 自抗扰控制的理论研究[D]. 北京: 中国科学院大学, 2012.

    XUE Wenchao. Theoretical study on active disturbance rejection control[D]. Beijing: University of Chinese Academy of Sciences, 2012. (in Chinese)
    [25] 李杰,齐晓慧,万慧,等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用,2017,34(3): 281-295.

    LI Jie,QI Xiaohui,WAN Hui,et al. Active disturbance rejection control: theoretical results summary and future researches[J]. Control Theory & Applications,2017,34(3): 281-295. (in Chinese)
    [26] 陈增强,孙明玮,杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报,2013,39(5): 574-580.

    CHEN Zengqiang,SUN Mingwei,YANG Ruiguang. On the stability of linear active disturbance rejection control[J]. Acta Automatica Sinica,2013,39(5): 574-580. (in Chinese)
    [27] 吴瑕,李晓栋,王思远,等. 基于RLESO的高超声速巡航飞行器跟踪控制器设计[J]. 控制与信息技术,2018(6): 85-90.

    WU Xia,LI Xiaodong,WANG Siyuan,et al. Tracking controller design for hypersonic cruise vehicle based on RLESO[J]. Control and Information Technology,2018(6): 85-90. (in Chinese)
    [28] 但志宏,张松,钱秋朦,等. 基于前馈反馈复合控制策略的高空舱高精度电液伺服控制技术[J]. 燃气涡轮试验与研究,2019,32(6): 1-5, 19.

    DAN Zhihong,ZHANG Song,QIAN Qiumeng,et al. High precision electro-hydraulic control in altitude test facility based on feedforward-feedback compound strategy[J]. Gas Turbine Experiment and Research,2019,32(6): 1-5, 19. (in Chinese)
    [29] 裴希同,张松,但志宏,等. 高空台飞行环境模拟系统数字建模与仿真研究[J]. 推进技术,2019,40(5): 1144-1152.

    PEI Xitong,ZHANG Song,DAN Zhihong,et al. Study on digital modeling and simulation of altitude test facility flight environment simulation system[J]. Journal of Propulsion Technology,2019,40(5): 1144-1152. (in Chinese)
  • 加载中
图(11)
计量
  • 文章访问数:  85
  • HTML浏览量:  44
  • PDF量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 网络出版日期:  2023-09-12

目录

    /

    返回文章
    返回