留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑气动-结构的高空螺旋桨多学科优化方法

口启慧 王海峰 江泓鑫 聂波

口启慧, 王海峰, 江泓鑫, 等. 考虑气动-结构的高空螺旋桨多学科优化方法[J]. 航空动力学报, 2024, 39(4):20220344 doi: 10.13224/j.cnki.jasp.20220344
引用本文: 口启慧, 王海峰, 江泓鑫, 等. 考虑气动-结构的高空螺旋桨多学科优化方法[J]. 航空动力学报, 2024, 39(4):20220344 doi: 10.13224/j.cnki.jasp.20220344
KOU Qihui, WANG Haifeng, JIANG Hongxin, et al. Multi-disciplinary optimization method for high-altitude propellers considering aero-structure[J]. Journal of Aerospace Power, 2024, 39(4):20220344 doi: 10.13224/j.cnki.jasp.20220344
Citation: KOU Qihui, WANG Haifeng, JIANG Hongxin, et al. Multi-disciplinary optimization method for high-altitude propellers considering aero-structure[J]. Journal of Aerospace Power, 2024, 39(4):20220344 doi: 10.13224/j.cnki.jasp.20220344

考虑气动-结构的高空螺旋桨多学科优化方法

doi: 10.13224/j.cnki.jasp.20220344
详细信息
    作者简介:

    口启慧(1994-),男,硕士生,主要从事多学科优化、飞行器设计等方面的研究。E-mail:2279348951@qq.com

  • 中图分类号: V228;V214.8

Multi-disciplinary optimization method for high-altitude propellers considering aero-structure

  • 摘要:

    为实现高空螺旋桨高效率和轻质量之间的权衡设计,提出一种考虑螺旋桨气动-结构性能的多学科多目标优化设计方法,理论上可得到约束条件下推力最大和质量最小的Pareto解集。但工程应用中,变量太多,可接受时间内仅能获得Pareto解集拟合趋势。为避免优化周期太长,提出以下阶段性优化方法。阶段1:根据上述Pareto解集拟合趋势和平台约束,确定最优桨径;阶段2:进行基于最优桨径的气动优化获得气动外形,结构优化获得结构方案。使用该方法对高空太阳能无人机螺旋桨优化,两个阶段耗时分别为96 h和4 h。对获得螺旋桨制造,仿真和试验,对比结果表明:推力最大误差为10.9%,质量误差为6.9%,刚度误差为15.2%,固有频率误差为15.4%,试验结果也表明该方法的合理有效性。

     

  • 图 1  桨叶升力和阻力分解

    Figure 1.  Velocity and force of blade element

    图 2  部分翼型典型径向剖面示意图

    Figure 2.  Some typical radial profile of airfoil series

    图 3  CFD模拟流场尺寸示意图

    Figure 3.  CFD simulation of flow field

    图 4  螺旋桨铺层区域划分示意图

    Figure 4.  Propeller lay-up regions division

    图 5  优化方法框架

    Figure 5.  Framework of the optimization method

    图 6  螺旋桨结构布局和结构形式

    Figure 6.  Propeller structure layout and structural type

    图 7  Pareto解集

    Figure 7.  Pareto solution set

    图 8  半径和推力、转速变化关系

    Figure 8.  Thrust and rotational speed variation with radius

    图 9  阶段2优化收敛曲线

    Figure 9.  Optimization convergence curves of stage 2

    图 10  低空静拉力测试

    Figure 10.  Test of thrust with low altitude

    图 11  低空静拉力测试数据

    Figure 11.  Test data of thrust with low altitude

    图 12  螺旋桨1阶固有频率和振型

    Figure 12.  First-order natural frequencies of the propeller

    图 13  螺旋桨固有频率试验

    Figure 13.  Natural frequency test of the propeller

    表  1  CFD计算参数设置

    Table  1.   CFD simulation parameters

    项目参数设置
    分析类型稳态
    运动域外流场:固定
    内流场:旋转
    热量交换总能量
    湍流模型SST (shear stress transport)
    网格连接GGI (general graphics interface)
    下载: 导出CSV

    表  2  设计工况

    Table  2.   Design condition

    名称参数
    海拔高度/km22
    大气压力/Pa4047.5
    空气密度/m30.0645098
    风速/(m/s)47.3
    声速/(m/s)296.377
    动力黏度/10−5 (N·s/m21.43217
    环境温度/℃−70~80
    下载: 导出CSV

    表  3  材料属性

    Table  3.   Material properties

    参数UDWovenPMI
    纵向弹性模量E1/GPa120700.05
    横向弹性模量E2/GPa7.3700.05
    切变模量G12/GPa4.74.10.019
    泊松比μ0.320.0620.25
    密度ρ/(kg/m31580165045
    单层厚度t/mm0.1250.20
    下载: 导出CSV

    表  4  螺旋桨优化结果

    Table  4.   Optimization results of the propeller

    参数数值
    半径/mm1400
    推力/N81.86
    转速/(r/min)1136
    功率/kW5
    效率/%77.43
    质量/kg2.858
    最大位移/mm6.92
    复合材料应变917.1
    1阶固有频率/Hz31.62
    下载: 导出CSV

    表  5  测试结果对比

    Table  5.   Comparison of the test results

    参数优化数据仿真数据测试数据
    质量/kg2.8582.8582.66
    位移/mm6.927.5456.4
    1阶固有频率/Hz31.6227.9523.66
    下载: 导出CSV
  • [1] ZHANG Sen,LI Huaxing,ABBASI A A. Design methodology using characteristic parameters control for low Reynolds number airfoils[J]. Aerospace Science and Technology,2019,86: 143-152. doi: 10.1016/j.ast.2019.01.003
    [2] MORGADO J,ABDOLLAHZADEH M,SILVESTRE M A R,et al. High altitude propeller design and analysis[J]. Aerospace Science and Technology,2015,45: 398-407. doi: 10.1016/j.ast.2015.06.011
    [3] MOUROUSIAS N, MALIM A, MARINUS B G, et al. Surrogate-based optimization of a high-altitude propeller[R]. AIAA 2021-2597, 2021.
    [4] GARCÍA-GUTIÉRREZ A,GONZALO J,DOMÍNGUEZ D,et al. Aerodynamic optimization of propellers for high altitude pseudo-satellites[J]. Aerospace Science and Technology,2020,96: 105562. doi: 10.1016/j.ast.2019.105562
    [5] ADRIAN G G,JESUS G,DEIBI L,et al. Stochastic design of high-altitude propellers[J]. Aerospace Science and Technology,2020,107: 106283.1-106283.9.
    [6] MA Rong,ZHONG Bowen,LIU Peiqing. Optimization design study of low-Reynolds-number high-lift airfoils for the high-efficiency propeller of low-dynamic vehicles in stratosphere[J]. Science China Technological Sciences,2010,53(10): 2792-2807. doi: 10.1007/s11431-010-4087-0
    [7] JIAO Jun,SONG Bifeng,ZHANG Yugang,et al. Optimal design and experiment of propellers for high altitude airship[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2018,232(10): 1887-1902. doi: 10.1177/0954410017704217
    [8] DUAN Dengyan,WANG Zhigang,WANG Qiannan,et al. Research on integrated optimization design method of high-efficiency motor propeller system for UAVs with multi-states[J]. IEEE Access,2020,8: 165432-165443. doi: 10.1109/ACCESS.2020.3014411
    [9] LIU Xinqiang,HE Weiliang,WEI Fengmei. Design of high altitude propeller using multilevel optimization[J]. International Journal of Computational Methods,2020,17(4): 1950004.1-1950004.32.
    [10] PARK D,LEE Y,CHO T,et al. Design and performance evaluation of propeller for solar-powered high-altitude long-endurance unmanned aerial vehicle[J]. International Journal of Aerospace Engineering,2018,2018: 1-23.
    [11] 程俊杰,王海峰,尚玲玲,等. 一种高空飞艇螺旋桨结构多目标优化设计方法[J]. 航空动力学报,2021,36(3): 584-591. doi: 10.13224/j.cnki.jasp.2021.03.014

    CHENG Junjie,WANG Haifeng,SHANG Lingling,et al. Multi-objective optimization design method for propeller structure of a high-altitude airship[J]. Journal of Aerospace Power,2021,36(3): 584-591. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.03.014
    [12] 尚玲玲,王海峰,口启慧,等. 平流层飞艇三叶螺旋桨结构优化方法[J]. 航空动力学报,2022,37(8): 1714-1723. doi: 10.13224/j.cnki.jasp.20210334

    SHANG Lingling,WANG Haifeng,KOU Qihui,et al. Structure optimization method of three-blade propeller for stratospheric airship[J]. Journal of Aerospace Power,2022,37(8): 1714-1723. (in Chinese) doi: 10.13224/j.cnki.jasp.20210334
    [13] MENG Junhui,HU Jie,XIAO Houdi,et al. Hierarchical optimization of the composite blade of a stratospheric airship propeller based on genetic algorithm[J]. Structural and Multidisciplinary Optimization,2017,56(6): 1341-1352. doi: 10.1007/s00158-017-1725-1
    [14] GOLDSTEIN S. On the vortex theory of screw propellers[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character,1929,123(792): 440-465. doi: 10.1098/rspa.1929.0078
    [15] REISSNER H. On the vortex theory of the screw propeller[J]. Journal of the Aeronautical Sciences,1937,5(1): 1-7. doi: 10.2514/8.496
    [16] ARIF M,ASIF M,AHEMD I. Advanced composite material for aerospace application-a review[J]. International Journal of Engineering and Manufacturing Science,2017,7(2): 393-409.
    [17] SHUE B, MOREIRA A, FLOWERS G. Review of recent developments in composite material for aerospace applications[C]// Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: Vol 1 Part B. San Diego, California, USA: ASME, 2010: 811-819.
    [18] AN Weigang,CHEN Dianyu,JIN Peng. A single-level composite structure optimization method based on a blending tapered model[J]. Chinese Journal of Aeronautics,2013,26(4): 943-947. doi: 10.1016/j.cja.2013.04.016
    [19] TIAN Song,WANG Haifeng,SHANG Lingling,et al. Structural optimization and influence factors on reliability for composite wind turbine blade[J]. Journal of Failure Analysis and Prevention,2021,21(6): 2305-2319. doi: 10.1007/s11668-021-01292-7
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  100
  • HTML浏览量:  43
  • PDF量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 网络出版日期:  2023-07-31

目录

    /

    返回文章
    返回