留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直接氨SOFC-GT混合动力系统性能及航空应用

徐乐根 毛军逵 梁凤丽 王在兴 杨孟林

徐乐根, 毛军逵, 梁凤丽, 等. 直接氨SOFC-GT混合动力系统性能及航空应用[J]. 航空动力学报, 2024, 39(4):20220346 doi: 10.13224/j.cnki.jasp.20220346
引用本文: 徐乐根, 毛军逵, 梁凤丽, 等. 直接氨SOFC-GT混合动力系统性能及航空应用[J]. 航空动力学报, 2024, 39(4):20220346 doi: 10.13224/j.cnki.jasp.20220346
XU Legen, MAO Junkui, LIANG Fengli, et al. Performance and aviation application of direct ammonia fuel SOFC-GT hybrid system[J]. Journal of Aerospace Power, 2024, 39(4):20220346 doi: 10.13224/j.cnki.jasp.20220346
Citation: XU Legen, MAO Junkui, LIANG Fengli, et al. Performance and aviation application of direct ammonia fuel SOFC-GT hybrid system[J]. Journal of Aerospace Power, 2024, 39(4):20220346 doi: 10.13224/j.cnki.jasp.20220346

直接氨SOFC-GT混合动力系统性能及航空应用

doi: 10.13224/j.cnki.jasp.20220346
基金项目: 173计划领域基金-重点项目(2021-JCJQ-JJ-0339); 先进航空动力创新工作站(HKCX2022-01-002);中国航空发动机集团产学研合作项目(HFZL2022CXY032)
详细信息
    作者简介:

    徐乐根(1997-),男,硕士生,主要从事混合动力系统综合能量管理研究

    通讯作者:

    梁凤丽(1982-),女,副教授,博士生,主要从事氢能与燃料电池混合动力技术研究。E-mail:fengli0912@nuaa.edu.cn

  • 中图分类号: V231.1

Performance and aviation application of direct ammonia fuel SOFC-GT hybrid system

  • 摘要:

    建立了基于直接氨燃料的固体氧化物燃料电池-燃气轮机(SOFC-GT)混合动力系统仿真模型,开发了一种架构优化的高功率-质量比的高效发电系统,并研究了燃料利用率和系统燃料分配对系统功率分配、各子部件质量以及其㶲损失等性能的影响。基于所建立的模型分析了压气机压比、燃料摩尔流量、空气摩尔流量等输入参数对系统性能的影响,在最优性能条件下对系统进行功率-质量比分析。仿真结果表明该系统的净发电效率为56.85%,㶲效率为50.71%,净发电量为213 kW,功率-质量比为0.7303 kW/kg,达到美国能源部太平洋西北国家实验室(PNNL)为SOFC-GT混合动力系统应用于航空航天领域制定的标准。在此基础上,讨论了该系统在商用飞机主动力和辅助动力上的应用,表明SOFC-GT混合动力系统在航空领域具有良好的应用前景。

     

  • 图 1  SOFC-GT混合动力系统架构

    Figure 1.  Schematic diagram of SOFC-GT hybrid system

    图 2  燃料电池电堆的伏安特性图

    Figure 2.  Voltammetric diagram of the fuel cell stack

    图 3  SOFC-GT混合动力系统的各部件质量分数

    Figure 3.  Mass fraction of each component of the SOFC-GT hybrid system

    图 4  燃料分配对SOFC-GT混合动力系统的输出功率分配的影响

    Figure 4.  Effects of fuel distribution variations on the SOFC-GT hybrid system output power distribution

    图 5  燃料分配对SOFC、GT输出功率的影响

    Figure 5.  Effects of fuel distribution variations on the output power of SOFC and GT

    图 6  燃料分配对SOFC的工作温度和工作电压的影响

    Figure 6.  Effects of fuel distribution variations on the temperature and voltage of SOFC

    图 7  燃料分配对SOFC、GT质量的影响

    Figure 7.  Effects of fuel distribution variations on the mass of SOFC and GT

    图 8  燃料分配对SOFC-GT混合动力系统㶲损失的影响

    Figure 8.  Effect of fuel distribution variations on the exergy loss of the SOFC-GT hybrid system

    图 9  燃料分配对SOFC-GT混合动力系统性能参数的影响

    Figure 9.  Effects of fuel distribution variations on the performance parameters for the SOFC-GT hybrid system

    图 10  燃料摩尔流量变化对SOFC-GT混合动力系统性能参数的影响

    Figure 10.  Effects of fuel mole flow variations on the performance parameters for the SOFC-GT hybrid system

    图 11  燃料摩尔流量变化对SOFC工作温度的影响

    Figure 11.  Effects of fuel mole flow variations on the temperature of the SOFC system

    图 12  燃料利用率对SOFC、GT输出功率的影响

    Figure 12.  Effect of fuel utilization variations on SOFC and GT output power

    图 13  燃料利用率变化对SOFC-GT混合动力系统性能参数的影响

    Figure 13.  Effects of fuel utilization variations on the performance parameters for the SOFC-GT hybrid system

    图 14  燃料利用率变化对SOFC-GT混合动力系统性能参数的影响

    Figure 14.  Effects of fuel utilization variations on the performance parameters for the SOFC-GT hybrid system

    图 15  燃料利用率变化对SOFC-GT混合动力系统㶲损失的影响

    Figure 15.  Effect of fuel utilization variations on the exergy loss of the SOFC-GT hybrid system

    图 16  空气摩尔流量对SOFC-GT混合动力系统性能参数的影响

    Figure 16.  Effects of air mole flow variations on the performance parameters for the SOFC-GT hybrid system

    图 17  空气摩尔流量对SOFC功率及涡轮发动机功率的影响

    Figure 17.  Effects of air mole flow on the SOFC power and turbine engine power

    图 18  空气摩尔流量对SOFC电压和工作温度的影响

    Figure 18.  Effects of air mole flow on the SOFC voltage and the SOFC operating temperature

    图 19  压气机压比对SOFC-GT混合动力系统性能的影响

    Figure 19.  Effects of compressor pressure ratio on the SOFC-GT hybrid system

    图 20  压气机压比对SOFC功率及GT功率的影响

    Figure 20.  Effects of compressor pressure ratio on the SOFC power and turbine engine power

    图 21  飞行各阶段功率需求以及飞行高度

    Figure 21.  Electric loads and flight altitude for different flight stage

    图 22  飞行各阶段的负载需求和系统输出功率

    Figure 22.  Electric loads and output power for different flight stage

    图 23  飞行各阶段的负载需求和SOFC、GT输出功率

    Figure 23.  Electric loads and output power of SOFC and GT for different flight stage

    图 24  飞行各阶段的负载需求和OFC-GT混合动力系统效率

    Figure 24.  Electric loads and the efficiency of SOFC-GT hybrid system for different flight stage

    表  1  SOFC-GT混合动力系统各部件的质量模型

    Table  1.   Mass models of sub-components of the SOFC-GT hybrid system

    部件公式
    压气机${m}_{ {\rm{comp} } }=1.588\;7 {\pi }_{\text{c} } ^{-0.305}$
    发电机${m}_{{\rm{afternater}}}=\dfrac{ {\dot{W} }_{{\rm{fc,stack}}} }{11.56}$
    SOFC电堆${m}_{ {\rm{cell} } }=\dfrac{ {\dot{W} }_{ {\rm{fc,stack,ac} } } }{0.263\times 2.5}$
    燃烧室${m}_{{\rm{comb}}}=10.6+ (\dot{m}-0.1) \times 62.7$
    热交换器${m}_{{\rm{hx}}}={m}_{{\rm{a.hx}}}+{m}_{{\rm{f.hx}}}$
    ${m}_{ {\rm{a.hx} } }=-1.84{\xi }_{ {\rm{hx} } }+37.1$
    ${m}_{ {\rm{f.hx} } }=-1.84 {\xi }_{ {\rm{hx} } }+16.3$
    涡轮${m}_{{\rm{gt}}}=0.1\times {\dot{W} }_{{\rm{gt}}}$
    其他部件${m}_{ {\rm{others} } }=0.1 {m}_{ {\rm{total} } }$
    系统总质量${m}_{ {\rm{total} } }={m}_{ {\rm{comp} } }+{m}_{ {\rm{afternater} } }+{m}_{ {\rm{cell} } }+{m}_{ {\rm{comb} } }+$
    ${m}_{ {\rm{hx} } }+{m}_{ {\rm{gt} } } +{m}_{ {\rm{others} } } $
    注:表中$ {\xi }_{{\rm{hx}}} $表示换热器换热效率。
    下载: 导出CSV

    表  2  SOFC-GT混合动力系统对比结果

    Table  2.   Performance comparison of the SOFC-GT hybrid system

    参数本文结果实验结果误差/%
    电压/V0.6140.610.6
    总功率/kW221.872230.5
    SOFC功率/kW175.571760.1
    GT功率/kW46.3471.5
    系统热效率0.59220.59520.5
    下载: 导出CSV

    表  3  SOFC-GT混合动力系统运行参数

    Table  3.   Operation parameters of the SOFC-GT hybrid system

    组件参数数值
    SOFC电池数量1152
    单电池有效面积/cm2834
    GT压气机压比2.9
    压气机等熵效率0.82
    涡轮等熵效率0.85
    燃烧室绝热效率0.98
    其他参数空气摩尔流量/(mol/s)20.211
    氨气摩尔流量/(mol/s)1.186
    燃料通入SOFC的比例0.6
    NH3的低位热值/(kJ/mol)316
    下载: 导出CSV

    表  4  各工况点状态参数

    Table  4.   Parameters of each operating point

    工况点温度/K压力/kPa摩尔流量/(mol/s)
    1298.15101.320.211
    2434.00293.820.211
    31177.00285.020.211
    41273.00276.419.790
    51519.00268.121.690
    61275.00111.721.690
    71245.00108.321.690
    8614.00105.121.690
    9298.15293.81.186
    10298.15293.80.7116
    11298.15293.80.4744
    121003.00285.00.7116
    131273.00276.41.423
    下载: 导出CSV

    表  5  各工况点物质的摩尔分数

    Table  5.   Mole fraction at each operating point

    工况点摩尔分数/%
    NH3H2O2N2H2O
    10021.079.00
    20021.079.00
    30021.079.00
    40019.380.70
    50015.576.38.2
    60015.576.38.2
    70015.576.38.2
    80015.576.38.2
    91000000
    101000000
    111000000
    121000000
    13016.102558.9
    下载: 导出CSV

    表  6  SOFC-GT混合动力系统计算结果

    Table  6.   Performance comparison of the SOFC-GT hybrid system

    参数本文结果文献[7]结果
    燃料利用率0.7850.8286
    工作电压/V0.66180.5763
    总功率/kW213200.5
    SOFC功率/kW102.7170.2
    GT功率/kW110.330.27
    系统热效率0.56850.4881
    系统㶲效率0.50710.4045
    下载: 导出CSV

    表  7  SOFC-GT混合动力系统计算结果

    Table  7.   Performance comparison of the SOFC-GT hybrid system

    参数数值
    工作电压/V0.6630
    总功率/kW214.3
    SOFC功率/kW104.2
    GT功率/kW110.1
    系统热效率0.57197
    下载: 导出CSV

    表  8  燃料并联管路对SOFC-GT混合动力系统性能的影响

    Table  8.   Influence of fuel parallel pipeline on SOFC-GT hybrid system performance

    参数数值
    系统效率0.56930.6356
    SOFC输出功率/kW102.8163.1
    GT输出功率/kW110.5075.08
    SOFC质量/kg159.6253.2
    GT质量/kg19.0515.51
    系统功质比/(kW/kg)0.73030.6089
    下载: 导出CSV

    表  9  SOFC-GT混合动力系统性能参数

    Table  9.   SOFC-GT hybrid system parameters

    参数数值
    系统输出功率/kW220
    系统效率0.54286
    燃料进入SOFC比例0.56103
    燃料利用率0.73928
    SOFC输出功率/kW112.01
    GT输出功率/kW107.99
    系统功质比/(kW/kg)0.7302
    下载: 导出CSV
  • [1] SMITH H J. The PACE of clean energy development[J]. Science,2017,355(6328): 921-922. doi: 10.1126/science.2017.355.6328.twil
    [2] MALE J L,KINTNER-MEYER M C W,WEBER R S. The U. S. energy system and the production of sustainable aviation fuel from clean electricity[J]. Frontiers in Energy Research,2021,9(3): 765360.1-765360.13.
    [3] JEONG W,YU W,LEE M S,et al. Ultrathin sputtered platinum-gadolinium doped ceria cathodic interlayer for enhanced performance of low temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2020,45(56): 32442-32448. doi: 10.1016/j.ijhydene.2020.08.239
    [4] 刘少名,邓占锋,徐桂芝,等. 欧洲固体氧化物燃料电池(SOFC)产业化现状[J]. 工程科学学报,2020,42(3): 278-288.

    LIU Shaoming,DENG Zhanfeng,XU Guizhi,et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe[J]. Chinese Journal of Engineering,2020,42(3): 278-288. (in Chinese)
    [5] LIN P H,HONG C W. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU[J]. Journal of Power Sources,2009,187(2): 517-526. doi: 10.1016/j.jpowsour.2008.11.043
    [6] CHOUDHARY T, SAHU M, KRISHNA S. Thermodynamic analysis of solid oxide fuel cell gas turbine hybrid system for aircraft power generation[R]. SAE Technical Paper-01-2062, 2017.
    [7] 胡焦英,毛军逵,贺振宗. 基于航空煤油重整的SOFC-GT混合动力系统性能[J]. 航空动力学报,2020,35(2): 325-336. doi: 10.13224/j.cnki.jasp.2020.02.012

    HU Jiaoying,MAO Junkui,HE Zhenzong. Performance of the SOFC-GT hybrid system based on aviation kerosene reforming[J]. Journal of Aerospace Power,2020,35(2): 325-336. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.02.012
    [8] 秦江,姬志行,郭发福,等. 航空用燃料电池及混合电推进系统发展综述[J]. 推进技术,2022,43(7): 6-23.

    QIN Jiang,JI Zhixing,GUO Fafu,et al. Review of aviation fuel cell and hybrid electric propulsion systems[J]. Journal of Propulsion Technology,2022,43(7): 6-23. (in Chinese)
    [9] SANZ O,VELASCO I,PÉREZ-MIQUEO I,et al. Intensification of hydrogen production by methanol steam reforming[J]. International Journal of Hydrogen Energy,2016,41(10): 5250-5259. doi: 10.1016/j.ijhydene.2016.01.084
    [10] DOLAN R H,ANDERSON J E,WALLINGTON T J. Outlook for ammonia as a sustainable transportation fuel[J]. Sustainable Energy & Fuels,2021,5(19): 4830-4841.
    [11] LAN Rong,TAO Shanwen. Ammonia as a suitable fuel for fuel cells[J]. Frontiers in Energy Research,2014,2(3): 35-47.
    [12] MIYAZAKI K,OKANISHI T,MUROYAMA H,et al. Development of Ni-Ba (Zr, Y) O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells[J]. Journal of Power Sources,2017,365: 148-154. doi: 10.1016/j.jpowsour.2017.08.085
    [13] ISHAK F,DINCER I,ZAMFIRESCU C. Energy and exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle[J]. Journal of Power Sources,2012,212: 73-85. doi: 10.1016/j.jpowsour.2012.03.083
    [14] EZZAT M F,DINCER I. Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems[J]. Energy,2020,194: 116750-116764. doi: 10.1016/j.energy.2019.116750
    [15] COLLINS J M,MCLARTY D. All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids[J]. Applied Energy,2020,265: 114787.1-114787.9.
    [16] WOJCIK A,MIDDLETON H,DAMOPOULOS I,et al. Ammonia as a fuel in solid oxide fuel cells[J]. Journal of Power Sources,2003,118(1/2): 342-348.
    [17] GUO Fafu,QIN Jiang,JI Zhixing,et al. Performance analysis of a turbofan engine integrated with solid oxide fuel cells based on Al-H2O hydrogen production for more electric long-endurance UAVs[J]. Energy Conversion and Management,2021,235(5): 113999.1-113999.16.
    [18] 刘强,段远源. 超临界600MW火电机组热力系统的火用分析[J]. 中国电机工程学报,2010,30(32): 8-12. doi: 10.13334/j.0258-8013.pcsee.2010.32.020

    LIU Qiang,DUAN Yuanyuan. Exergy analysis for thermal power system of a 600 MW supercritical power unit[J]. Proceedings of the CSEE,2010,30(32): 8-12. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.2010.32.020
    [19] SHAMOUSHAKI M,EHYAEI M A,GHANATIR F. Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant[J]. Energy,2017,134: 515-531. doi: 10.1016/j.energy.2017.06.058
    [20] JI Zhixing,QIN Jiang,CHENG Kunlin,et al. Design and performance of a compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells[J]. Frontiers in Energy Research,2021,8: 613205.1-613205.14.
    [21] JI Zhixing,ROKNI M M,QIN Jiang,et al. Energy and configuration management strategy for battery/fuel cell/jet engine hybrid propulsion and power systems on aircraft[J]. Energy Conversion and Management,2020,225: 113393.1-113393.16.
    [22] CIRIGLIANO D,FRISCH A M,LIU Feng,et al. Diesel, spark-ignition, and turboprop engines for long-duration unmanned air flights[J]. Journal of Propulsion and Power,2018,34(4): 878-892. doi: 10.2514/1.B36547
    [23] TORNABENE R, WANG X Y, STEFFEN C J Jr, et al. Development of parametric mass and volume models for an aerospace SOFC/gas turbine hybrid system[C]// Turbo Expo 2005 ASMEDC. Reno-Tahoe, US : NASA, 2005: 135-144.
    [24] LUO Yu,LIAO Shuting,CHEN Shuai,et al. Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation[J]. Applied Energy,2022,307(2): 118158.1-118158.14.
    [25] MOLOUK A F S,YANG Jun,OKANISHI T,et al. Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs[J]. ECS Transactions,2015,68(1): 2751-2762. doi: 10.1149/06801.2751ecst
    [26] 吴小娟. 固体氧化物燃料电池/微型燃气轮机混合发电系统的建模与控制[D]. 上海: 上海交通大学, 2009.

    WU Xiaojuan. Modeling and control of solid oxide fuel cell/micro gas turbine hybrid power generation system[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
    [27] JI Zhixing,QIN Jiang,CHENG Kunlin,et al. Comparative performance analysis of solid oxide fuel cell turbine-less jet engines for electric propulsion airplanes: application of alternative fuel[J]. Aerospace Science and Technology,2019(10): 105286.1-105286.14.
    [28] SEYAM S,DINCER I,AGELIN-CHAAB M. Investigation of two hybrid aircraft propulsion and powering systems using alternative fuels[J]. Energy,2021,232(1): 121037.1-121037.12.
    [29] LI Y H,CHOI S S,RAJAKARUNA S. An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system[J]. IEEE Transactions on Energy Conversion,2005,20(2): 381-387. doi: 10.1109/TEC.2005.847998
    [30] 钱煜平,张扬军. 航空混合电推进系统中的热管理问题分析[J]. 航空动力,2019(6): 36-40.

    QIAN Yuping,ZHANG Yangjun. Analysis of thermal management in aviation hybrid electric propulsion system[J]. Aerospace Power,2019(6): 36-40. (in Chinese)
    [31] VALENCIA E A, HIDALGO V, PANAGIOTIS L, et al. Design point analysis of an hybrid fuel cell gas turbine cycle for advanced distributed propulsion systems[C]//Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia, US: AIAA, 2015: 3802-3802.
    [32] FERNANDES M D,DE P ANDRADE S T,BISTRITZKI V N,et al. SOFC-APU systems for aircraft: a review[J]. International Journal of Hydrogen Energy,2018,43(33): 16311-16333. doi: 10.1016/j.ijhydene.2018.07.004
    [33] DAGGETT D, EELMAN S, KRISTIANSSON G. Fuel cell APU[R]. AIAA 2003-2660, 2003.
    [34] BRAUN R J,GUMMALLA M,YAMANIS J. System architectures for solid oxide fuel cell-based auxiliary power units in future commercial aircraft applications[J]. Journal of Fuel Cell Science and Technology,2009,6(3): 268-271.
  • 加载中
图(24) / 表(9)
计量
  • 文章访问数:  149
  • HTML浏览量:  74
  • PDF量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回